JEE Main Electrostatics PYQs (2025 → 2010)

2025

  1. Work to bring a charge to triangle corner
  • Triangle side 4cm4\,\text{cm}4cm. Charges q1=2nCq_1 = 2\,\text{nC}q1​=2nC, q2=4nCq_2 = 4\,\text{nC}q2​=4nC at bottom corners. Bring q3=3nCq_3 = 3\,\text{nC}q3​=3nC to top corner.
  • Diagram: equilateral triangle, label charges A, B, C.
  1. Electric field zero between two charges
  • +2μC+2\,\mu C+2μC at x=0x=0x=0, +8μC+8\,\mu C+8μC at x=1mx=1\,\text{m}x=1m. Find point along x-axis where net electric field is zero.
  1. Potential on axis of a uniformly charged rod
  • Rod length 0.6m0.6\,\text{m}0.6m, total charge 6μC6\,\mu C6μC, point along axis 0.2m0.2\,\text{m}0.2m from one end.
  1. Torque on a dipole in uniform field
  • Dipole p=3×1012Cmp = 3\times10^{-12}\,C·mp=3×10−12C⋅m in uniform field E=2×103V/mE = 2\times10^3\,V/mE=2×103V/m at angle 3030^\circ30∘ to field.
  1. Series capacitors with dielectric
  • C1=4μFC_1 = 4\,\mu FC1​=4μF, C2=6μFC_2 = 6\,\mu FC2​=6μF in series. Dielectric κ=2\kappa=2κ=2 in C1C_1C1​. Find new equivalent capacitance.

2024

  1. Field at midpoint of line of two charges
  • Charges +3μC+3\,\mu C+3μC at x=0x=0x=0, +6μC+6\,\mu C+6μC at x=2mx=2\,\text{m}x=2m. Find field at midpoint.
  1. Potential difference between two points
  • Charges +2μC+2\,\mu C+2μC at x=0x=0x=0, +3μC+3\,\mu C+3μC at x=3mx=3\,\text{m}x=3m. Find potential difference between x=1mx=1\,\text{m}x=1m and x=2mx=2\,\text{m}x=2m.
  1. Gauss law – field outside a cylinder
  • Infinite cylinder radius 0.1m0.1\,\text{m}0.1m, linear charge density λ=4×106C/m\lambda=4\times10^{-6}\,C/mλ=4×10−6C/m. Find field at r=0.2mr=0.2\,\text{m}r=0.2m.
  1. Dipole along axis
  • Dipole p=2×1012Cmp=2\times10^{-12}\,C·mp=2×10−12C⋅m, point along axis 0.05m0.05\,\text{m}0.05m from center.
  1. Parallel plate capacitor with dielectric
  • Capacitance C=5μFC=5\,\mu FC=5μF, dielectric κ=3\kappa=3κ=3 partially fills plates.

2023

  1. Electric field at center of square of charges
  • Square side 0.5m0.5\,\text{m}0.5m, corner charges +1,+2,+3,+4μC+1, +2, +3, +4\,\mu C+1,+2,+3,+4μC. Find net field at center.
  1. Work to assemble three charges on a line
  • Charges +2,+3,+4μC+2, +3, +4\,\mu C+2,+3,+4μC at positions 0, 1, 2 m. Find work done to assemble.
  1. Potential at axis of charged ring
  • Ring radius 0.2m0.2\,\text{m}0.2m, Q=6μCQ = 6\,\mu CQ=6μC, point along axis 0.1m0.1\,\text{m}0.1m from center.
  1. Torque on a dipole
  • Dipole p=1×1012Cmp=1\times10^{-12}\,C·mp=1×10−12C⋅m, E=1000V/mE=1000\,V/mE=1000V/m, angle 4545^\circ45∘.
  1. Capacitor in series
  • Capacitors C1=2μFC_1=2\,\mu FC1​=2μF, C2=3μFC_2=3\,\mu FC2​=3μF in series. Find equivalent capacitance.

2022

  1. Electric field due to semicircular rod
  • Rod radius 0.1m0.1\,\text{m}0.1m, total charge Q=4μCQ=4\,\mu CQ=4μC. Find field at center of circle.
  1. Point where field is zero between two charges
  • Charges +5μC+5\,\mu C+5μC and +20μC+20\,\mu C+20μC separated by 2m2\,\text{m}2m. Find point along line of charges where field is zero.
  1. Potential at a point due to line charge
  • Rod length 0.5m0.5\,\text{m}0.5m, Q=5μCQ=5\,\mu CQ=5μC, point along axis 0.1m0.1\,\text{m}0.1m from one end.
  1. Torque on a dipole
  • Dipole p=2×1012Cmp=2\times10^{-12}\,C·mp=2×10−12C⋅m, E=2000V/mE=2000\,V/mE=2000V/m, angle 6060^\circ60∘.
  1. Capacitor partially filled with dielectric
  • C=6μFC=6\,\mu FC=6μF, dielectric κ=2\kappa=2κ=2 fills half the space.

2021

  1. Electric field at midpoint of two charges
  • Charges +4μC+4\,\mu C+4μC at x=0x=0x=0, +6μC+6\,\mu C+6μC at x=1.5mx=1.5\,mx=1.5m. Find electric field at midpoint.
  1. Work to assemble charges on a line
  • Charges +3,+5,+2μC+3, +5, +2\,\mu C+3,+5,+2μC at 0, 1, 2 m. Find total work done.
  1. Potential at center of square of charges
  • Square side 0.4m0.4\,\text{m}0.4m, corner charges +2,+2,+2,+2μC+2, +2, +2, +2\,\mu C+2,+2,+2,+2μC. Find potential at center.
  1. Torque on a dipole in uniform field
  • Dipole p=2×1012Cmp = 2\times10^{-12}\,C·mp=2×10−12C⋅m, E=1500V/mE=1500\,V/mE=1500V/m, θ=45\theta=45^\circθ=45∘.
  1. Capacitor with dielectric slab
  • Parallel plate capacitor C=4μFC=4\,\mu FC=4μF, dielectric κ=3\kappa=3κ=3 fills half distance. Find new capacitance.

2020

  1. Field at a point on the axis of a charged ring
  • Ring radius 0.15m0.15\,\text{m}0.15m, total charge Q=5μCQ=5\,\mu CQ=5μC, point 0.1m0.1\,\text{m}0.1m above center.
  1. Point where field is zero between unequal charges
  • Charges +3μC+3\,\mu C+3μC at x=0x=0x=0, +12μC+12\,\mu C+12μC at x=2mx=2\,\text{m}x=2m.
  1. Potential due to uniform line charge
  • Rod length 0.5m0.5\,\text{m}0.5m, charge 4μC4\,\mu C4μC, point 0.2m0.2\,\text{m}0.2m from one end along axis.
  1. Torque on a dipole in uniform field
  • Dipole p=1.5×1012Cmp = 1.5\times10^{-12}\,C·mp=1.5×10−12C⋅m, E=2000V/mE=2000\,V/mE=2000V/m, angle 6060^\circ60∘.
  1. Series capacitors with dielectric in one
  • C1=3μFC_1 = 3\,\mu FC1​=3μF, C2=6μFC_2 = 6\,\mu FC2​=6μF, dielectric κ=2\kappa=2κ=2 in C1C_1C1​.

2019

  1. Electric field at center of semicircular ring
  • Ring radius 0.1m0.1\,\text{m}0.1m, charge Q=3μCQ=3\,\mu CQ=3μC.
  1. Work done to bring a charge to midpoint of two charges
  • Charges +2,+4μC+2, +4\,\mu C+2,+4μC at ends of 1 m line, bring q=1μCq=1\,\mu Cq=1μC to midpoint.
  1. Potential on axis of charged disk
  • Disk radius 0.2m0.2\,\text{m}0.2m, charge Q=5μCQ=5\,\mu CQ=5μC, point 0.1m0.1\,\text{m}0.1m above center.
  1. Torque on dipole
  • Dipole p=1×1012Cmp=1\times10^{-12}\,C·mp=1×10−12C⋅m, E=1000V/mE=1000\,V/mE=1000V/m, angle 3030^\circ30∘.
  1. Capacitor partially filled with dielectric
  • C=5μFC=5\,\mu FC=5μF, dielectric κ=3\kappa=3κ=3 fills half plate distance.

2018

  1. Point where field is zero along line of two charges
  • Charges +4,+16μC+4, +16\,\mu C+4,+16μC separated by 2 m.
  1. Electric field at center of square with four charges
  • Square side 0.3m0.3\,m0.3m, corner charges +1,+2,+3,+4μC+1, +2, +3, +4\,\mu C+1,+2,+3,+4μC.
  1. Potential at midpoint between two charges
  • Charges +3,+5μC+3, +5\,\mu C+3,+5μC separated by 1 m.
  1. Dipole in uniform field
  • Dipole p=2×1012Cmp=2\times10^{-12}\,C·mp=2×10−12C⋅m, E=1500V/mE=1500\,V/mE=1500V/m, θ=60\theta=60^\circθ=60∘.
  1. Series capacitors with dielectric in one
  • C1=2μF,C2=4μFC_1=2\,\mu F, C_2=4\,\mu FC1​=2μF,C2​=4μF, dielectric κ=2\kappa=2κ=2 in C1C_1C1​.

2017

  1. Field at axis of a charged ring
  • Ring radius 0.1m0.1\,\text{m}0.1m, charge Q=4μCQ=4\,\mu CQ=4μC, point 0.05m0.05\,\text{m}0.05m above center.
  1. Electric field zero between unequal charges
  • Charges +2,+8μC+2, +8\,\mu C+2,+8μC separated by 1 m.
  1. Potential on axis of rod
  • Rod length 0.5 m, charge 3 μC, point 0.1 m from end.
  1. Torque on dipole
  • Dipole p=1×1012Cmp=1\times10^{-12}\,C·mp=1×10−12C⋅m, E=2000V/mE=2000\,V/mE=2000V/m, angle 4545^\circ45∘.
  1. Capacitor partially filled with dielectric
  • C=3μFC=3\,\mu FC=3μF, dielectric κ=2\kappa=2κ=2 fills half distance.

2016

  1. Work to bring a charge to triangle corner
  • Equilateral triangle side 3 cm, charges q1=1μCq_1=1\,\mu Cq1​=1μC, q2=2μCq_2=2\,\mu Cq2​=2μC, bring q3=3μCq_3=3\,\mu Cq3​=3μC to third corner.
  1. Electric field at midpoint of two charges
  • Charges +3,+6μC+3, +6\,\mu C+3,+6μC separated by 1 m.
  1. Potential at axis of rod
  • Rod length 0.6 m, charge 5 μC, point 0.2 m from one end.
  1. Dipole in uniform field
  • p=2×1012Cmp=2\times10^{-12}\,C·mp=2×10−12C⋅m, E=1000V/mE=1000\,V/mE=1000V/m, angle 30°.
  1. Series capacitors with dielectric in one
  • C1=4μF,C2=6μFC_1=4\,\mu F, C_2=6\,\mu FC1​=4μF,C2​=6μF, κ=2\kappa=2κ=2 in C1C_1C1​.

2015

  1. Electric field at center of square
  • Square side 0.4 m, charges +1,+1,+1,+1μC+1, +1, +1, +1\,\mu C+1,+1,+1,+1μC.
  1. Work to assemble 3 charges on line
  • Charges +2,+3,+4μC+2, +3, +4\,\mu C+2,+3,+4μC at 0,1,2 m.
  1. Potential at midpoint between two charges
  • Charges +3,+5μC+3, +5\,\mu C+3,+5μC separated by 1 m.
  1. Torque on dipole
  • p=1.5×1012Cmp=1.5\times10^{-12}\,C·mp=1.5×10−12C⋅m, E=1500V/mE=1500\,V/mE=1500V/m, angle 45°.
  1. Capacitor partially filled with dielectric
  • C=4μFC=4\,\mu FC=4μF, dielectric κ=3\kappa=3κ=3 fills half distance.

2014

  1. Point where field is zero between two charges
  • Charges +3,+12μC+3, +12\,\mu C+3,+12μC separated by 2 m.
  1. Field at center of semicircular rod
  • Rod radius 0.1 m, charge 4 μC.
  1. Potential at axis of charged ring
  • Ring radius 0.15 m, charge 5 μC, point 0.1 m above center.
  1. Torque on dipole
  • p=2×1012Cmp=2\times10^{-12}\,C·mp=2×10−12C⋅m, E=1000V/mE=1000\,V/mE=1000V/m, angle 60°.
  1. Capacitors in series
  • C1=2μF,C2=3μFC_1=2 μF, C_2=3 μFC1​=2μF,C2​=3μF, series combination.

2013

  1. Work to bring charge to triangle corner
  • Triangle side 3 cm, charges q1=1μC,q2=2μCq_1=1 μC, q_2=2 μCq1​=1μC,q2​=2μC, bring q3=3μCq_3=3 μCq3​=3μC.
  1. Electric field zero along line
  • Charges +2,+8μC+2, +8 μC+2,+8μC separated by 1 m.
  1. Potential at axis of rod
  • Rod length 0.5 m, charge 3 μC, point 0.2 m from end.
  1. Dipole in uniform field
  • p=1×1012Cmp=1×10^{-12} C·mp=1×10−12C⋅m, E=2000V/mE=2000 V/mE=2000V/m, angle 45°.
  1. Capacitor with dielectric
  • C=3μFC=3 μFC=3μF, dielectric κ=2 fills half distance.

2012

  1. Electric field at midpoint of two charges
  • Charges +3, +6 μC, separation 1 m.
  1. Work to assemble three charges on line
  • Charges +2, +3, +4 μC at 0,1,2 m.
  1. Potential at center of square
  • Square side 0.4 m, charges +1, +2, +3, +4 μC.
  1. Torque on dipole
  • Dipole p=2×10⁻¹² C·m, E=1000 V/m, angle 30°.
  1. Series capacitors with dielectric
  • C₁=4 μF, C₂=6 μF, dielectric κ=2 in C₁.

2011

  1. Point where field is zero between unequal charges
  • Charges +2, +8 μC separated by 1 m.
  1. Field at axis of charged ring
  • Ring radius 0.15 m, charge 5 μC, point 0.1 m above center.
  1. Potential on axis of rod
  • Rod length 0.6 m, charge 5 μC, point 0.2 m from one end.
  1. Torque on dipole
  • Dipole p=1×10⁻¹² C·m, E=1500 V/m, angle 45°.
  1. Capacitor partially filled with dielectric
  • C=4 μF, dielectric κ=3 fills half distance.

2010

  1. Work to bring a charge to triangle corner
  • Triangle side 3 cm, charges q₁=1 μC, q₂=2 μC, bring q₃=3 μC.
  1. Electric field at midpoint of two charges
  • Charges +3, +6 μC, separation 1 m.
  1. Potential at center of square of charges
  • Square side 0.4 m, charges +1, +1, +1, +1 μC.
  1. Dipole in uniform field
  • Dipole p=1×10⁻¹² C·m, E=1000 V/m, angle 30°.
  1. Capacitors in series
  • C₁=2 μF, C₂=3 μF, series combination.

Electrostatics Solutions – 2025


Q1: Work to bring a charge to the corner of a triangle

Problem:

  • Equilateral triangle, side 4cm4\,\text{cm}4cm
  • Charges q1=2nCq_1=2\,\text{nC}q1​=2nC, q2=4nCq_2=4\,\text{nC}q2​=4nC at bottom corners
  • Bring q3=3nCq_3=3\,\text{nC}q3​=3nC to top corner

Diagram description:

  • Draw triangle ABC, bottom corners A (q1q_1q1​) and B (q2q_2q2​), top corner C (q3q_3q3​ moves here)

Solution:

  1. Distance between charges: r=0.04mr = 0.04\,\text{m}r=0.04m
  2. Potential at C due to q1q_1q1​ and q2q_2q2​:

VC=k(q1r+q2r)=9×109(2×1090.04+4×1090.04)=9×1091.5×107=1350VV_C = k \left(\frac{q_1}{r} + \frac{q_2}{r}\right) = 9\times10^9 \left(\frac{2\times10^{-9}}{0.04} + \frac{4\times10^{-9}}{0.04}\right) = 9\times10^9 \cdot 1.5\times10^{-7} = 1350\,\text{V}VC​=k(rq1​​+rq2​​)=9×109(0.042×10−9​+0.044×10−9​)=9×109⋅1.5×10−7=1350V

  1. Work done to bring q3q_3q3​ from infinity:

W=q3VC=3×1091350=4.05×106JW = q_3 V_C = 3\times10^{-9} \cdot 1350 = 4.05\times10^{-6}\,JW=q3​VC​=3×10−9⋅1350=4.05×10−6J

Answer: W=4.05μJW = 4.05\,\mu JW=4.05μJ


Q2: Electric field zero between two charges

Problem:

  • Charges +2μC+2\,\mu C+2μC at x=0x=0x=0, +8μC+8\,\mu C+8μC at x=1mx=1\,mx=1m
  • Find point along x-axis where net field is zero

Diagram description:

  • Draw x-axis, charge +2 at 0, +8 at 1 m, point P somewhere between

Solution:

  1. Let point P be at distance xxx from smaller charge (+2 μC).
  • Electric field due to +2 μC: E1=k2x2E_1 = k \frac{2}{x^2}E1​=kx22​
  • Electric field due to +8 μC: E2=k8(1x)2E_2 = k \frac{8}{(1-x)^2}E2​=k(1−x)28​
  1. Set E1=E2E_1 = E_2E1​=E2​ (opposite directions):

2x2=8(1x)2    1x=21x    1x=2x    x=13m\frac{2}{x^2} = \frac{8}{(1-x)^2} \implies \frac{1}{x} = \frac{2}{1-x} \implies 1-x = 2x \implies x = \frac{1}{3}\,mx22​=(1−x)28​⟹x1​=1−x2​⟹1−x=2x⟹x=31​m

Answer: x=0.333mx = 0.333\,mx=0.333m from +2 μC


Q3: Potential on axis of a uniformly charged rod

Problem:

  • Rod length 0.6m0.6\,\text{m}0.6m, total charge Q=6μCQ=6\,\mu CQ=6μC
  • Point along axis 0.2m0.2\,\text{m}0.2m from one end

Diagram description:

  • Horizontal rod along x-axis, left end at origin, point P at x=0.2 m

Solution:

  1. Linear charge density: λ=Q/L=6×106/0.6=1×105C/m\lambda = Q/L = 6\times10^{-6}/0.6 = 1\times10^{-5}\,C/mλ=Q/L=6×10−6/0.6=1×10−5C/m
  2. Potential at point along axis:

V=k0Lλdxr=9×10910500.6dx0.2+xV = k \int_0^L \frac{\lambda dx}{r} = 9\times10^9 \cdot 10^{-5} \int_0^{0.6} \frac{dx}{0.2 + x}V=k∫0L​rλdx​=9×109⋅10−5∫00.6​0.2+xdx​

  1. Solve integral:

V=9×104ln0.2+0.60.2=9×104ln49×1041.386=1.247×105VV = 9\times10^4 \ln\frac{0.2+0.6}{0.2} = 9\times10^4 \ln 4 \approx 9\times10^4 \cdot 1.386 = 1.247\times10^5\,VV=9×104ln0.20.2+0.6​=9×104ln4≈9×104⋅1.386=1.247×105V

Answer: V1.25×105VV \approx 1.25\times10^5\,VV≈1.25×105V


Q4: Torque on a dipole in uniform field

Problem:

  • Dipole p=3×1012Cmp = 3\times10^{-12}\,C·mp=3×10−12C⋅m
  • Uniform field E=2×103V/mE = 2\times10^3\,V/mE=2×103V/m, angle θ=30\theta = 30^\circθ=30∘

Diagram description:

  • Draw dipole vector at 30° to field vector

Solution:

  1. Torque formula:

τ=pEsinθ\tau = p E \sin\thetaτ=pEsinθ

  1. Substituting values:

τ=3×10122×103sin30=3×10122×1030.5=3×109Nm\tau = 3\times10^{-12} \cdot 2\times10^3 \cdot \sin30^\circ = 3\times10^{-12} \cdot 2\times10^3 \cdot 0.5 = 3\times10^{-9}\,N·mτ=3×10−12⋅2×103⋅sin30∘=3×10−12⋅2×103⋅0.5=3×10−9N⋅m

Answer: τ=3×109Nm\tau = 3\times10^{-9}\,N·mτ=3×10−9N⋅m


Q5: Series capacitors with dielectric

Problem:

  • Capacitors in series: C1=4μFC_1=4\,\mu FC1​=4μF, C2=6μFC_2=6\,\mu FC2​=6μF
  • Dielectric κ=2\kappa = 2κ=2 inserted in C1C_1C1​

Diagram description:

  • Two capacitors in series, show dielectric slab in C₁

Solution:

  1. Capacitance of C₁ after dielectric:

C1=κC1=24=8μFC_1′ = \kappa C_1 = 2 \cdot 4 = 8\,\mu FC1′​=κC1​=2⋅4=8μF

  1. Equivalent capacitance for series combination:

1Ceq=1C1+1C2=18+16=724    Ceq=2473.43μF\frac{1}{C_{eq}} = \frac{1}{C_1′} + \frac{1}{C_2} = \frac{1}{8} + \frac{1}{6} = \frac{7}{24} \implies C_{eq} = \frac{24}{7} \approx 3.43\,\mu FCeq​1​=C1′​1​+C2​1​=81​+61​=247​⟹Ceq​=724​≈3.43μF

Answer: Ceq3.43μFC_{eq} \approx 3.43\,\mu FCeq​≈3.43μF

Electrostatics Solutions – 2025


Q1: Work to bring a charge to the corner of a triangle

Problem:

  • Equilateral triangle, side 4cm4\,\text{cm}4cm
  • Charges q1=2nCq_1=2\,\text{nC}q1​=2nC, q2=4nCq_2=4\,\text{nC}q2​=4nC at bottom corners
  • Bring q3=3nCq_3=3\,\text{nC}q3​=3nC to top corner

Diagram description:

  • Draw triangle ABC, bottom corners A (q1q_1q1​) and B (q2q_2q2​), top corner C (q3q_3q3​ moves here)

Solution:

  1. Distance between charges: r=0.04mr = 0.04\,\text{m}r=0.04m
  2. Potential at C due to q1q_1q1​ and q2q_2q2​:

VC=k(q1r+q2r)=9×109(2×1090.04+4×1090.04)=9×1091.5×107=1350VV_C = k \left(\frac{q_1}{r} + \frac{q_2}{r}\right) = 9\times10^9 \left(\frac{2\times10^{-9}}{0.04} + \frac{4\times10^{-9}}{0.04}\right) = 9\times10^9 \cdot 1.5\times10^{-7} = 1350\,\text{V}VC​=k(rq1​​+rq2​​)=9×109(0.042×10−9​+0.044×10−9​)=9×109⋅1.5×10−7=1350V

  1. Work done to bring q3q_3q3​ from infinity:

W=q3VC=3×1091350=4.05×106JW = q_3 V_C = 3\times10^{-9} \cdot 1350 = 4.05\times10^{-6}\,JW=q3​VC​=3×10−9⋅1350=4.05×10−6J

Answer: W=4.05μJW = 4.05\,\mu JW=4.05μJ


Q2: Electric field zero between two charges

Problem:

  • Charges +2μC+2\,\mu C+2μC at x=0x=0x=0, +8μC+8\,\mu C+8μC at x=1mx=1\,mx=1m
  • Find point along x-axis where net field is zero

Diagram description:

  • Draw x-axis, charge +2 at 0, +8 at 1 m, point P somewhere between

Solution:

  1. Let point P be at distance xxx from smaller charge (+2 μC).
  • Electric field due to +2 μC: E1=k2x2E_1 = k \frac{2}{x^2}E1​=kx22​
  • Electric field due to +8 μC: E2=k8(1x)2E_2 = k \frac{8}{(1-x)^2}E2​=k(1−x)28​
  1. Set E1=E2E_1 = E_2E1​=E2​ (opposite directions):

2x2=8(1x)2    1x=21x    1x=2x    x=13m\frac{2}{x^2} = \frac{8}{(1-x)^2} \implies \frac{1}{x} = \frac{2}{1-x} \implies 1-x = 2x \implies x = \frac{1}{3}\,mx22​=(1−x)28​⟹x1​=1−x2​⟹1−x=2x⟹x=31​m

Answer: x=0.333mx = 0.333\,mx=0.333m from +2 μC


Q3: Potential on axis of a uniformly charged rod

Problem:

  • Rod length 0.6m0.6\,\text{m}0.6m, total charge Q=6μCQ=6\,\mu CQ=6μC
  • Point along axis 0.2m0.2\,\text{m}0.2m from one end

Diagram description:

  • Horizontal rod along x-axis, left end at origin, point P at x=0.2 m

Solution:

  1. Linear charge density: λ=Q/L=6×106/0.6=1×105C/m\lambda = Q/L = 6\times10^{-6}/0.6 = 1\times10^{-5}\,C/mλ=Q/L=6×10−6/0.6=1×10−5C/m
  2. Potential at point along axis:

V=k0Lλdxr=9×10910500.6dx0.2+xV = k \int_0^L \frac{\lambda dx}{r} = 9\times10^9 \cdot 10^{-5} \int_0^{0.6} \frac{dx}{0.2 + x}V=k∫0L​rλdx​=9×109⋅10−5∫00.6​0.2+xdx​

  1. Solve integral:

V=9×104ln0.2+0.60.2=9×104ln49×1041.386=1.247×105VV = 9\times10^4 \ln\frac{0.2+0.6}{0.2} = 9\times10^4 \ln 4 \approx 9\times10^4 \cdot 1.386 = 1.247\times10^5\,VV=9×104ln0.20.2+0.6​=9×104ln4≈9×104⋅1.386=1.247×105V

Answer: V1.25×105VV \approx 1.25\times10^5\,VV≈1.25×105V


Q4: Torque on a dipole in uniform field

Problem:

  • Dipole p=3×1012Cmp = 3\times10^{-12}\,C·mp=3×10−12C⋅m
  • Uniform field E=2×103V/mE = 2\times10^3\,V/mE=2×103V/m, angle θ=30\theta = 30^\circθ=30∘

Diagram description:

  • Draw dipole vector at 30° to field vector

Solution:

  1. Torque formula:

τ=pEsinθ\tau = p E \sin\thetaτ=pEsinθ

  1. Substituting values:

τ=3×10122×103sin30=3×10122×1030.5=3×109Nm\tau = 3\times10^{-12} \cdot 2\times10^3 \cdot \sin30^\circ = 3\times10^{-12} \cdot 2\times10^3 \cdot 0.5 = 3\times10^{-9}\,N·mτ=3×10−12⋅2×103⋅sin30∘=3×10−12⋅2×103⋅0.5=3×10−9N⋅m

Answer: τ=3×109Nm\tau = 3\times10^{-9}\,N·mτ=3×10−9N⋅m


Q5: Series capacitors with dielectric

Problem:

  • Capacitors in series: C1=4μFC_1=4\,\mu FC1​=4μF, C2=6μFC_2=6\,\mu FC2​=6μF
  • Dielectric κ=2\kappa = 2κ=2 inserted in C1C_1C1​

Diagram description:

  • Two capacitors in series, show dielectric slab in C₁

Solution:

  1. Capacitance of C₁ after dielectric:

C1=κC1=24=8μFC_1′ = \kappa C_1 = 2 \cdot 4 = 8\,\mu FC1′​=κC1​=2⋅4=8μF

  1. Equivalent capacitance for series combination:

1Ceq=1C1+1C2=18+16=724    Ceq=2473.43μF\frac{1}{C_{eq}} = \frac{1}{C_1′} + \frac{1}{C_2} = \frac{1}{8} + \frac{1}{6} = \frac{7}{24} \implies C_{eq} = \frac{24}{7} \approx 3.43\,\mu FCeq​1​=C1′​1​+C2​1​=81​+61​=247​⟹Ceq​=724​≈3.43μF

Answer: Ceq3.43μFC_{eq} \approx 3.43\,\mu FCeq​≈3.43μF