Mock Test – JEE Main – Physics- Oscillation

Oscillations – JEE Main Practice Set MCQ 25 Questions


Q1.

In SHM, the kinetic energy becomes three times the potential energy at displacement:

A) A2\frac{A}{2}2A​
B) A2\frac{A}{\sqrt{2}}2​A​
C) A22\frac{A}{2\sqrt{2}}22​A​
D) A23\frac{A}{2} \sqrt{3}2A​3​


Q2.

In an SHM system, 36% of total energy is kinetic at some displacement. The particle is at:

A) 0.8A0.8A0.8A
B) 0.6A0.6A0.6A
C) 0.5A0.5A0.5A
D) 0.4A0.4A0.4A


Q3.

For motion given by a=25xa = -25xa=−25x, the time period is:

A) 2π5\frac{2\pi}{5}52π​
B) π5\frac{\pi}{5}5π​
C) 2π25\frac{2\pi}{25}252π​
D) π25\frac{\pi}{25}25π​


Q4.

Speed becomes half of maximum speed at displacement:

A) A2\frac{A}{2}2A​
B) 3A2\frac{\sqrt{3}A}{2}23​A​
C) A2\frac{A}{\sqrt{2}}2​A​
D) A3\frac{A}{\sqrt{3}}3​A​


Q5.

Superposition of
x1=Asinωtx_1 = A \sin \omega tx1​=Asinωt
x2=Asin(ωt+π/2)x_2 = A \sin(\omega t + \pi/2)x2​=Asin(ωt+π/2)
gives resultant amplitude:

A) AAA
B) 2A\sqrt{2}A2​A
C) 2A2A2A
D) A/2A/2A/2


Q6.

If mass in spring system increases by 44%, time period increases by:

A) 20%
B) 22%
C) 44%
D) 10%


Q7.

At x=A3x = \frac{A}{3}x=3A​, acceleration is what fraction of maximum acceleration?

A) 1/3
B) 1/9
C) 1/2
D) 2/3


Q8.

If gravity becomes 4g4g4g, time period of pendulum becomes:

A) T/2T/2T/2
B) T/4T/4T/4
C) 2T2T2T
D) TTT


Q9.

At displacement A/2A/2A/2, potential energy is:

A) 1/2 of total
B) 1/4 of total
C) 3/4 of total
D) 1/3 of total


Q10.

Time taken from extreme to mean position is:

A) T/4T/4T/4
B) T/2T/2T/2
C) T/8T/8T/8
D) T/6T/6T/6


Q11.

If amplitude = 0.2 m and time period = 2 s, maximum speed is:

A) 0.2π
B) 0.4π
C) 0.1π
D) 0.8π


Q12.

Springs kkk and 3k3k3k in series have equivalent constant:

A) 3k4\frac{3k}{4}43k​
B) 4k4k4k
C) k4\frac{k}{4}4k​
D) 2k2k2k


Q13.

Ratio of time from 0 to A/2A/2A/2 and A/2A/2A/2 to AAA is:

A) 1:1
B) 1:2
C) 2:1
D) 1:3


Q14.

If spring breaks at mean position, mass rises to height:

A) A2ω22g\frac{A^2 \omega^2}{2g}2gA2ω2​
B) Aωg\frac{A\omega}{g}gAω​
C) AAA
D) A2g\frac{A^2}{g}gA2​


Q15.

Using velocity values at two positions, angular frequency depends on:

A) Difference in displacement
B) Difference in squares of velocities
C) Difference in squares of displacement
D) Both B and C


Q16.

Pendulum taken inside Earth will:

A) Gain time
B) Lose time
C) No change
D) Stop oscillating


Q17.

Time spent near mean position compared to near extreme is:

A) Less
B) More
C) Equal
D) Zero


Q18.

Mass between two identical springs (k each) has effective constant:

A) k
B) 2k
C) k/2
D) 4k


Q19.

Amplitude when projected from mean with speed v0v_0v0​ is:

A) v0/ωv_0/\omegav0​/ω
B) v0ωv_0 \omegav0​ω
C) v02/ωv_0^2/\omegav02​/ω
D) ω/v0\omega/v_0ω/v0​


Q20.

Cutting spring into two equal halves makes new constant:

A) k/2
B) 2k
C) k
D) 4k


Q21.

Superposition with phase difference π\piπ results in:

A) Amplitude 2A
B) Zero motion
C) A
D) √2A


Q22.

Average speed over one complete oscillation equals:

A) 2AT\frac{2A}{T}T2A​
B) 4AT\frac{4A}{T}T4A​
C) πAT\frac{\pi A}{T}TπA​
D) AT\frac{A}{T}TA​


Q23.

Time from A/2A/2A/2 to 3A/2\sqrt{3}A/23​A/2 equals:

A) T/12T/12T/12
B) T/6T/6T/6
C) T/8T/8T/8
D) T/4T/4T/4


Q24.

If total energy is 8 J and amplitude 0.1 m, spring constant is:

A) 800
B) 1600
C) 400
D) 200


Q25.

If pendulum length increases by 21%, time period increases by approximately:

A) 10%
B) 21%
C) 5%
D) 42%

Answer Only

Question No.Answer
1D
2A
3A
4B
5B
6A
7A
8A
9B
10A
11B
12A
13C
14A
15D
16B
17B
18B
1

Solutions

Oscillations – Detailed Solutions


Q1

KE = 3 × PE

Total Energy:E=12kA2E = \frac{1}{2}kA^2E=21​kA2

At displacement xxx:PE=12kx2PE = \frac{1}{2}kx^2PE=21​kx2 KE=12k(A2x2)KE = \frac{1}{2}k(A^2 – x^2)KE=21​k(A2−x2)

Given:12k(A2x2)=3×12kx2\frac{1}{2}k(A^2 – x^2) = 3 \times \frac{1}{2}kx^221​k(A2−x2)=3×21​kx2 A2x2=3x2A^2 – x^2 = 3x^2A2−x2=3×2 A2=4x2A^2 = 4x^2A2=4×2 x=A2x = \frac{A}{2}x=2A​

Correct option: D


Q2

36% energy kinetic → 64% potential12kx2=0.64×12kA2\frac{1}{2}kx^2 = 0.64 \times \frac{1}{2}kA^221​kx2=0.64×21​kA2 x2=0.64A2x^2 = 0.64A^2x2=0.64A2 x=0.8Ax = 0.8Ax=0.8A

Correct option: A


Q3

Given:a=25xa = -25xa=−25x

Compare with:a=ω2xa = -\omega^2 xa=−ω2x ω2=25\omega^2 = 25ω2=25 ω=5\omega = 5ω=5 T=2πω=2π5T = \frac{2\pi}{\omega} = \frac{2\pi}{5}T=ω2π​=52π​

Correct option: A


Q4

v=ωA2x2v = \omega \sqrt{A^2 – x^2}v=ωA2−x2​

Given:v=vmax2=ωA2v = \frac{v_{max}}{2} = \frac{\omega A}{2}v=2vmax​​=2ωA​ ω2(A2x2)=ω2A24\omega^2 (A^2 – x^2) = \frac{\omega^2 A^2}{4}ω2(A2−x2)=4ω2A2​ A2x2=A24A^2 – x^2 = \frac{A^2}{4}A2−x2=4A2​ x2=3A24x^2 = \frac{3A^2}{4}x2=43A2​ x=3A2x = \frac{\sqrt{3}A}{2}x=23​A​

Correct option: B


Q5

Phase difference = π/2

Resultant amplitude:R=A2+A2=2AR = \sqrt{A^2 + A^2} = \sqrt{2}AR=A2+A2​=2​A

Correct option: B


Q6

T=2πmkT = 2\pi \sqrt{\frac{m}{k}}T=2πkm​​

If mass increases 44%:m=1.44mm’ = 1.44mm′=1.44m T=T1.44=1.2TT’ = T\sqrt{1.44} = 1.2TT′=T1.44​=1.2T

20% increase

Correct option: A


Q7

a=ω2xa = -\omega^2 xa=−ω2x amax=ω2Aa_{max} = \omega^2 Aamax​=ω2A aamax=xA\frac{a}{a_{max}} = \frac{x}{A}amax​a​=Ax​ =13= \frac{1}{3}=31​

Correct option: A


Q8

T=2πLgT = 2\pi \sqrt{\frac{L}{g}}T=2πgL​​

If g4gg \to 4gg→4g:T=2πL4g=T2T’ = 2\pi \sqrt{\frac{L}{4g}} = \frac{T}{2}T′=2π4gL​​=2T​

Correct option: A


Q9

PEE=x2A2\frac{PE}{E} = \frac{x^2}{A^2}EPE​=A2x2​ =(A/2)2A2= \frac{(A/2)^2}{A^2}=A2(A/2)2​ =14= \frac{1}{4}=41​

Correct option: B


Q10

Extreme to mean = quarter periodT/4T/4T/4

Correct option: A


Q11

vmax=ωAv_{max} = \omega Avmax​=ωA ω=2πT=π\omega = \frac{2\pi}{T} = \piω=T2π​=π vmax=π×0.2=0.2πv_{max} = \pi \times 0.2 = 0.2\pivmax​=π×0.2=0.2π

Correct option: B


Q12

Series:1keq=1k+13k\frac{1}{k_{eq}} = \frac{1}{k} + \frac{1}{3k}keq​1​=k1​+3k1​ =43k= \frac{4}{3k}=3k4​ keq=3k4k_{eq} = \frac{3k}{4}keq​=43k​

Correct option: A


Q13

Time from 0 to A/2:sinθ=1/2\sin \theta = 1/2sinθ=1/2 θ=π/6\theta = \pi/6θ=π/6

Time = T/12

From A/2 to A:π/2π/6=π/3\pi/2 – \pi/6 = \pi/3π/2−π/6=π/3

Time = T/6

Ratio:1:21:21:2

Correct option: C


Q14

At mean:vmax=Aωv_{max} = A\omegavmax​=Aω

Height:12mv2=mgh\frac{1}{2}mv^2 = mgh21​mv2=mgh h=A2ω22gh = \frac{A^2\omega^2}{2g}h=2gA2ω2​

Correct option: A


Q15

From:v2=ω2(A2x2)v^2 = \omega^2(A^2 – x^2)v2=ω2(A2−x2)

Subtract two equations → depends on both

Correct option: D


Q16

Inside Earth:g=g(1d/R)g’ = g(1 – d/R)g′=g(1−d/R)

T increases → clock loses time

Correct option: B


Q17

Speed highest near mean → spends less time

Spends more time near extreme

Correct option: B


Q18

Effective constant = 2k

Correct option: B


Q19

vmax=Aωv_{max} = A\omegavmax​=Aω A=v0ωA = \frac{v_0}{\omega}A=ωv0​​

Correct option: A


Q20

New length = L/2k=2kk’ = 2kk′=2k

Correct option: B


Q21

Phase difference π

Complete cancellation

Correct option: B


Q22

Total distance in one oscillation:4A4A4A

Average speed:4AT\frac{4A}{T}T4A​

Correct option: B


Q23

sin1(1/2)=π/6\sin^{-1}(1/2) = \pi/6sin−1(1/2)=π/6 sin1(3/2)=π/3\sin^{-1}(\sqrt{3}/2) = \pi/3sin−1(3​/2)=π/3

Difference = π/6

Time:T12\frac{T}{12}12T​

Correct option: A


Q24

E=12kA2E = \frac{1}{2}kA^2E=21​kA2 8=12k(0.1)28 = \frac{1}{2}k(0.1)^28=21​k(0.1)2 8=0.005k8 = 0.005k8=0.005k k=1600k = 1600k=1600

Correct option: B


Q25

TLT \propto \sqrt{L}T∝L​ L=1.21LL’ = 1.21LL′=1.21L T=T1.21=1.1TT’ = T\sqrt{1.21} = 1.1TT′=T1.21​=1.1T

10% increase

Correct option: A