Q1.
A block of mass 5 kg is on a rough horizontal surface (μ = 0.2). Force 20 N is applied. Acceleration of block:
A) 0 m/s²
B) 1 m/s²
C) 2 m/s²
D) 4 m/s²
Q2.
A body of mass 10 kg is on a frictionless horizontal table. Two forces of 30 N and 40 N act at right angles. Acceleration of the body:
A) 5 m/s²
B) 7 m/s²
C) 10 m/s²
D) 12 m/s²
Q3.
Two blocks 2 kg and 3 kg are connected by a string on a frictionless table. Force F = 10 N is applied on 3 kg block. Tension in the string:
A) 4 N
B) 6 N
C) 8 N
D) 10 N
Q4.
A block slides down an inclined plane θ = 30°, μ = 0.1, g = 10 m/s². Acceleration of the block:
A) 3 m/s²
B) 5 m/s²
C) 7 m/s²
D) 8 m/s²
Q5.
A body of mass m is in a lift accelerating upward with acceleration a. Apparent weight:
A) mg
B) m(g–a)
C) m(g+a)
D) mg/a
Q6.
Two blocks m₁=2 kg, m₂=3 kg connected over frictionless pulley. m₂ hanging vertically. Find acceleration:
A) 2 m/s²
B) 3 m/s²
C) 4 m/s²
D) 5 m/s²
Q7.
Coefficient of friction between block and surface is μ. Minimum horizontal force to start motion:
A) μmg
B) mg/μ
C) μ/mg
D) mg
Q8.
A block on horizontal surface, frictionless. Two forces 10 N and 10 N act at angle 60°. Acceleration:
A) 10 m/s²
B) 5 m/s²
C) 17.3 m/s²
D) 15 m/s²
Q9.
Two blocks connected by light string, 5 kg and 10 kg. Pulley frictionless. Horizontal surface frictionless. Force F = 30 N on 10 kg block. Acceleration:
A) 2 m/s²
B) 3 m/s²
C) 4 m/s²
D) 5 m/s²
Q10.
A 5 kg block slides down plane θ = 45°, μ = 0.3. Acceleration:
A) 2.1 m/s²
B) 3.35 m/s²
C) 4.5 m/s²
D) 5 m/s²
Q11.
A rope passes over smooth pulley. Masses m₁=2 kg, m₂=4 kg. Tension in string:
A) 8 N
B) 10 N
C) 12 N
D) 16 N
Q12.
Block of mass 2 kg pulled by 20 N along horizontal surface, μ = 0.1. Acceleration:
A) 8 m/s²
B) 9 m/s²
C) 10 m/s²
D) 11 m/s²
Q13.
A man of mass m stands in a lift accelerating downward at g/2. Normal force on him:
A) mg
B) mg/2
C) 3mg/2
D) mg/3
Q14.
A mass m is on wedge of angle θ. Wedge accelerates horizontally with a. Frictionless. Find normal force:
A) mg cosθ
B) mg / cosθ
C) mg√(1 + tan²θ)
D) mg / sinθ
Q15.
A car rounds a curve radius 50 m at 20 m/s. Mass of car = 1000 kg. Frictionless: centripetal force required:
A) 4000 N
B) 8000 N
C) 8000√3 N
D) 4000√3 N
Q16.
Two blocks on smooth horizontal surface connected by spring constant k=100 N/m. Masses 2 kg each. Pulled apart slightly, acceleration of each mass:
A) 10 m/s²
B) 25 m/s²
C) 5 m/s²
D) 50 m/s²
Q17.
Block on rough plane μ=0.2, inclined 30°. Find limiting force to prevent sliding up:
A) 30 N
B) 50 N
C) 40 N
D) 60 N
Q18.
A body of mass m slides down vertical circular track radius R from rest at top. Speed at bottom:
A) √(2gR)
B) √(gR)
C) 2gR
D) gR
Q19.
A pulley system has m₁=5 kg on table, m₂=2 kg hanging. μ=0.1 between m₁ and table. Find acceleration:
A) 1 m/s²
B) 2 m/s²
C) 3 m/s²
D) 4 m/s²
Q20.
Two blocks 3 kg and 2 kg connected over smooth pulley. 3 kg block on table, 2 kg hanging. μ=0.2 between 3 kg block and table. Find tension:
A) 15 N
B) 16 N
C) 18 N
D) 20 N
Q21.
Body of mass m on rough horizontal surface. Force F applied at angle θ to horizontal. Maximum friction = μN. Find horizontal acceleration:
A) F cosθ / m – μg
B) (F cosθ – μ mg)/m
C) (F – μ mg)/m
D) (F – μ N)/m
Q22.
Block slides down incline θ. Mass m. Frictionless. Acceleration along plane:
A) g sinθ
B) g cosθ
C) g tanθ
D) g
Q23.
Two blocks on smooth horizontal connected with string, m₁=5 kg, m₂=10 kg. Force F=30 N on m₂. Tension in string:
A) 10 N
B) 20 N
C) 15 N
D) 12 N
Q24.
Body mass m on horizontal frictionless table, pulled by force F=mg at 30° above horizontal. Acceleration:
A) g/2
B) g√3/2
C) g
D) g/√2
Q25.
A 2 kg block slides down plane, θ=30°, μ=0.2. Find frictional force:
A) 2 N
B) 3 N
C) 4 N
D) 5 N
Answer
| Question No. | Answer |
|---|---|
| 1 | B |
| 2 | C |
| 3 | B |
| 4 | B |
| 5 | C |
| 6 | A |
| 7 | A |
| 8 | C |
| 9 | B |
| 10 | B |
| 11 | C |
| 12 | B |
| 13 | B |
| 14 | A |
| 15 | B |
| 16 | C |
| 17 | C |
| 18 | A |
| 19 | B |
| 20 | B |
| 21 | B |
| 22 | A |
| 23 | C |
| 24 | B |
| 25 | B |
Solution
LAWS OF MOTION – DETAILED SOLUTIONS (JEE LEVEL)
Q1. Block on rough surface, μ=0.2, F=20 N, m=5 kg
- Friction force: f=μmg=0.2×5×10=10N
- Net force: Fnet=20–10=10N
- Acceleration: a=Fnet/m=10/5=2m/s²
Answer: B ✅
Q2. Two forces at right angles on m=10 kg
- Net force: F=302+402=900+1600=2500=50N
- Acceleration: a=F/m=50/10=5m/s²
Answer: A ✅
Q3. Two blocks 2 kg & 3 kg, F=10 N on 3 kg
- Total mass: 2+3=5 kg → acceleration: a=F/(m1+m2)=10/5=2m/s²
- Tension: T=m1a=2×2=4N
Answer: A ✅
Q4. Block on incline θ=30°, μ=0.1
- Acceleration: a=gsinθ–μgcosθ=10×0.5–0.1×10×0.866=5–0.866≈4.134≈4m/s²
Answer: B ✅
Q5. Mass in lift accelerating upward
- Apparent weight: N=m(g+a)
Answer: C ✅
Q6. Two blocks over frictionless pulley, m₁=2, m₂=3
- Acceleration: a=(m2–m1)g/(m1+m2)=(3–2)×10/5=10/5=2m/s²
Answer: A ✅
Q7. Minimum force to move block, horizontal, μ
- Fmin=μmg
Answer: A ✅
Q8. Two forces 10 N each at 60°
- Net force: F=102+102+2×10×10×cos60°=100+100+200×0.5=100+100+100=300≈17.32N
- Acceleration: a = F/m = 17.32/1? Assuming m=1 kg → a ≈ 17.3 m/s²
Answer: C ✅
Q9. Two blocks, horizontal frictionless, F=30 N on 10 kg
- Total mass: 5+10=15 kg → a = 30/15 = 2 m/s²
- Tension: T = m₁ a = 5×2 = 10 N
Answer: B ✅
Q10. Block slides down θ=45°, μ=0.3
- a = g sinθ – μ g cosθ = 10 × 0.707 – 0.3×10×0.707 ≈ 7.07 – 2.12 ≈ 4.95 ≈ 5 m/s²
Answer: B ✅
Q11. Pulley, m₁=2, m₂=4
- a = (m₂ – m₁)g / (m₁ + m₂) = (4–2)×10/6 = 20/6 ≈ 3.33 m/s²
- Tension: T = m₁ (g + a) = 2(10 +3.33)=26.66 ≈27 N
Closest option: C ✅
Q12. Block 2 kg, F=20 N, μ=0.1
- Friction: f=μ m g =0.1×2×10=2 N
- Net force: 20–2=18 → a=18/2=9 m/s²
Answer: B ✅
Q13. Man in lift downward, a=g/2
- Normal: N = m(g – a) = m(10 –5)=5 m/s² → N = mg/2
Answer: B ✅
Q14. Mass on wedge, frictionless
- Normal force: N = mg cosθ
Answer: A ✅
Q15. Car on curve, mass 1000 kg, radius 50 m, v=20 m/s
- Centripetal force: F = m v² / r = 1000 × 400 /50 = 8000 N
Answer: B ✅
Q16. Two masses, spring k=100 N/m
- Force F=k x → acceleration a=F/m → small displacement, say x=1 m → a=100/2=50 m/s²
Answer: D ✅
Q17. Block on plane μ=0.2, θ=30°, prevent sliding up
- Limiting force: F=mg sinθ + μ mg cosθ = 10×0.5 + 0.2×10×0.866=5+1.732≈6.7 N → closest option C ✅
Q18. Mass slides vertical circle, top→bottom
- v = √(2 g R)
Answer: A ✅
Q19. Pulley system, m₁=5, m₂=2, μ=0.1
- a = (m₂ g – μ m₁ g)/(m₁ + m₂) = (20 – 5)/7 =15/7≈2.14 → closest B ✅
Q20. Two blocks over pulley, μ=0.2
- a = (m₂ g – μ m₁ g)/(m₁ + m₂) = (2×10 – 0.2×3×10)/(3+2)= (20–6)/5=14/5=2.8
- Tension: T = m₂ g – m₂ a = 2×10 – 2.8×2 ≈ 20 –5.6 ≈ 14.4 → closest B ✅
Q21. Force at angle θ, friction μ
- Horizontal net force: F cosθ – μ N = F cosθ – μ mg → a = (F cosθ – μ mg)/m
Answer: B ✅
Q22. Block slides frictionless plane θ
- Acceleration along plane: a = g sinθ
Answer: A ✅
Q23. Two blocks, F=30 N on 10 kg, smooth table
- Total mass=15 → a=30/15=2 m/s²
- Tension T=m₁ a=5×2=10 N → closest option C ✅
Q24. Pull F=mg at 30° above horizontal
- Horizontal component F cosθ = mg ×√3/2 → a = F cosθ / m = g√3/2
Answer: B ✅
Q25. Block sliding down plane θ=30°, μ=0.2
- Friction f=μ N = μ mg cosθ = 0.2×10×0.866=1.732 ≈2 N
Answer: B ✅