Algebraic Expressions and Identities – Quick Notes Class 8
1. Algebraic Expressions
- An algebraic expression contains variables, constants, and arithmetic operations.
- Examples: 3x+5, 2a2−3b+7
Terms: The parts of an expression separated by + or −.
- Example: 3x+5y−7 → Terms: 3x,5y,−7
Coefficient: The numerical factor of a term.
- Example: In 3x, coefficient = 3
Types of Expressions:
- Monomial: One term (5x)
- Binomial: Two terms (x+5)
- Trinomial: Three terms (x+y+z)
2. Algebraic Identities
- Identity: An equation true for all values of the variables.
Important Identities:
- Square of a sum:
(a+b)2=a2+2ab+b2
- Square of a difference:
(a−b)2=a2−2ab+b2
- Product of sum and difference:
(a+b)(a−b)=a2−b2
- Cube of a sum:
(a+b)3=a3+b3+3ab(a+b)
- Cube of a difference:
(a−b)3=a3−b3−3ab(a−b)
- Sum of cubes:
a3+b3=(a+b)(a2−ab+b2)
- Difference of cubes:
a3−b3=(a−b)(a2+ab+b2)
Tips / Tricks:
- Always identify type of identity first before expanding or factoring.
- Use shortcut formulas to simplify calculations quickly.
- Check signs carefully when applying cube and square formulas.
Algebraic Expressions and Identities – MCQ Q&A
- Q: What is the coefficient of x in 5x+7?
A: 5 - Q: Number of terms in 3x+4y−7?
A: 3 - Q: Is x+2 a monomial, binomial, or trinomial?
A: Binomial ✅ - Q: Expand (x+3)2
A: x2+6x+9 - Q: Expand (a−b)2
A: a2−2ab+b2 - Q: Expand (x+5)(x−5)
A: x2−25 - Q: Expand (a+b)3
A: a3+b3+3ab(a+b) - Q: Expand (a−b)3
A: a3−b3−3ab(a−b) - Q: Factorize x2−16
A: (x+4)(x−4) - Q: Factorize a3+b3
A: (a+b)(a2−ab+b2) - Q: Factorize a3−b3
A: (a−b)(a2+ab+b2) - Q: Type of expression 7x2y?
A: Monomial ✅ - Q: Expand (x+y)2
A: x2+2xy+y2 - Q: Expand (2a−3b)2
A: 4a2−12ab+9b2 - Q: Expand (x+2)(x+5)
A: x2+7x+10 - Q: Coefficient of xy in (x+y)2
A: 2 - Q: Factorize x2+2x+1
A: (x+1)2 - Q: Factorize x2−10x+25
A: (x−5)2 - Q: Expand (x−3)(x2+3x+9)
A: x3−27 - Q: True or False: a2−b2=(a−b)2
A: False ✅, correct factorization: (a−b)(a+b)