Class 8 Maths Algebraic Expressions and Identities Notes & MCQs

Algebraic Expressions and Identities – Quick Notes Class 8

1. Algebraic Expressions

  • An algebraic expression contains variables, constants, and arithmetic operations.
  • Examples: 3x+53x + 53x+5, 2a23b+72a^2 – 3b + 72a2−3b+7

Terms: The parts of an expression separated by + or −.

  • Example: 3x+5y73x + 5y − 73x+5y−7 → Terms: 3x,5y,73x, 5y, -73x,5y,−7

Coefficient: The numerical factor of a term.

  • Example: In 3x3x3x, coefficient = 3

Types of Expressions:

  1. Monomial: One term (5x5x5x)
  2. Binomial: Two terms (x+5x + 5x+5)
  3. Trinomial: Three terms (x+y+zx + y + zx+y+z)

2. Algebraic Identities

  • Identity: An equation true for all values of the variables.

Important Identities:

  1. Square of a sum:

(a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2

  1. Square of a difference:

(ab)2=a22ab+b2(a – b)^2 = a^2 – 2ab + b^2(a−b)2=a2−2ab+b2

  1. Product of sum and difference:

(a+b)(ab)=a2b2(a + b)(a – b) = a^2 – b^2(a+b)(a−b)=a2−b2

  1. Cube of a sum:

(a+b)3=a3+b3+3ab(a+b)(a + b)^3 = a^3 + b^3 + 3ab(a + b)(a+b)3=a3+b3+3ab(a+b)

  1. Cube of a difference:

(ab)3=a3b33ab(ab)(a – b)^3 = a^3 – b^3 – 3ab(a – b)(a−b)3=a3−b3−3ab(a−b)

  1. Sum of cubes:

a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 – ab + b^2)a3+b3=(a+b)(a2−ab+b2)

  1. Difference of cubes:

a3b3=(ab)(a2+ab+b2)a^3 – b^3 = (a – b)(a^2 + ab + b^2)a3−b3=(a−b)(a2+ab+b2)


Tips / Tricks:

  • Always identify type of identity first before expanding or factoring.
  • Use shortcut formulas to simplify calculations quickly.
  • Check signs carefully when applying cube and square formulas.

Algebraic Expressions and Identities – MCQ Q&A

  1. Q: What is the coefficient of x in 5x+75x + 75x+7?
    A: 5
  2. Q: Number of terms in 3x+4y73x + 4y − 73x+4y−7?
    A: 3
  3. Q: Is x+2x + 2x+2 a monomial, binomial, or trinomial?
    A: Binomial ✅
  4. Q: Expand (x+3)2(x + 3)^2(x+3)2
    A: x2+6x+9x^2 + 6x + 9x2+6x+9
  5. Q: Expand (ab)2(a − b)^2(a−b)2
    A: a22ab+b2a^2 − 2ab + b^2a2−2ab+b2
  6. Q: Expand (x+5)(x5)(x + 5)(x − 5)(x+5)(x−5)
    A: x225x^2 − 25x2−25
  7. Q: Expand (a+b)3(a + b)^3(a+b)3
    A: a3+b3+3ab(a+b)a^3 + b^3 + 3ab(a + b)a3+b3+3ab(a+b)
  8. Q: Expand (ab)3(a − b)^3(a−b)3
    A: a3b33ab(ab)a^3 − b^3 − 3ab(a − b)a3−b3−3ab(a−b)
  9. Q: Factorize x216x^2 − 16x2−16
    A: (x+4)(x4)(x + 4)(x − 4)(x+4)(x−4)
  10. Q: Factorize a3+b3a^3 + b^3a3+b3
    A: (a+b)(a2ab+b2)(a + b)(a^2 − ab + b^2)(a+b)(a2−ab+b2)
  11. Q: Factorize a3b3a^3 − b^3a3−b3
    A: (ab)(a2+ab+b2)(a − b)(a^2 + ab + b^2)(a−b)(a2+ab+b2)
  12. Q: Type of expression 7x2y7x^2y7x2y?
    A: Monomial ✅
  13. Q: Expand (x+y)2(x + y)^2(x+y)2
    A: x2+2xy+y2x^2 + 2xy + y^2x2+2xy+y2
  14. Q: Expand (2a3b)2(2a − 3b)^2(2a−3b)2
    A: 4a212ab+9b24a^2 − 12ab + 9b^24a2−12ab+9b2
  15. Q: Expand (x+2)(x+5)(x + 2)(x + 5)(x+2)(x+5)
    A: x2+7x+10x^2 + 7x + 10x2+7x+10
  16. Q: Coefficient of xy in (x+y)2(x + y)^2(x+y)2
    A: 2
  17. Q: Factorize x2+2x+1x^2 + 2x + 1x2+2x+1
    A: (x+1)2(x + 1)^2(x+1)2
  18. Q: Factorize x210x+25x^2 − 10x + 25x2−10x+25
    A: (x5)2(x − 5)^2(x−5)2
  19. Q: Expand (x3)(x2+3x+9)(x − 3)(x^2 + 3x + 9)(x−3)(x2+3x+9)
    A: x327x^3 − 27x3−27
  20. Q: True or False: a2b2=(ab)2a^2 − b^2 = (a − b)^2a2−b2=(a−b)2
    A: False ✅, correct factorization: (ab)(a+b)(a − b)(a + b)(a−b)(a+b)