Factorization – Quick Notes Class 8
1. Definition:
Factorization is the process of expressing an algebraic expression as a product of its factors.
- Example: x2+5x=x(x+5)
2. Methods of Factorization
- Common Factor Method
- Take out the greatest common factor (GCF).
- Example: 6×2+9x=3x(2x+3)
- Factorization by Grouping
- Group terms to factor common elements.
- Example: ax+ay+bx+by=(a+b)(x+y)
- Factorization of Quadratics
- x2+(a+b)x+ab=(x+a)(x+b)
- x2−(a+b)x+ab=(x−a)(x−b)
- Factorization Using Identities
- a2−b2=(a−b)(a+b)
- a2+2ab+b2=(a+b)2
- a3+b3=(a+b)(a2−ab+b2)
- a3−b3=(a−b)(a2+ab+b2)
Tips / Tricks
- Always check GCF first before applying identities.
- Identify perfect square or cube forms.
- For quadratic trinomials, find two numbers whose product = constant term and sum = middle coefficient.
Factorization – MCQ Q&A
- Q: Factorize x2+5x
A: x(x+5) - Q: Factorize 6×2+9x
A: 3x(2x+3) - Q: Factorize ax+ay+bx+by
A: (a+b)(x+y) - Q: Factorize x2+7x+12
A: (x+3)(x+4) - Q: Factorize x2−5x+6
A: (x−2)(x−3) - Q: Factorize a2−b2
A: (a−b)(a+b) - Q: Factorize x2+2xy+y2
A: (x+y)2 - Q: Factorize x3+y3
A: (x+y)(x2−xy+y2) - Q: Factorize x3−y3
A: (x−y)(x2+xy+y2) - Q: Factorize 2×2+8x
A: 2x(x+4) - Q: Factorize x2+9x+20
A: (x+4)(x+5) - Q: Factorize x2−16
A: (x−4)(x+4) - Q: Factorize x2−2x−15
A: (x−5)(x+3) - Q: Factorize 3×2−12
A: 3(x2−4)=3(x−2)(x+2) - Q: Factorize 4×2+12x+9
A: (2x+3)2 - Q: Factorize x3+8
A: (x+2)(x2−2x+4) - Q: Factorize 27×3−8
A: (3x−2)(9×2+6x+4) - Q: Factorize 5x2y+10xy2
A: 5xy(x+2y) - Q: Factorize x2+6x+9
A: (x+3)2 - Q: Factorize x2−10x+25
A: (x−5)2