Inequalities Notes & Questions | Competitive Exams

Inequalities – Complete Notes for Competitive Exams

1. Introduction

Inequalities are mathematical statements that compare two expressions using symbols like:<,>,,,<, >, \le, \ge, \neq<,>,≤,≥,=

They are a frequent topic in Quantitative Aptitude sections of SSC, Banking, Railways, and other competitive exams.


2. Types of Inequalities

  1. Linear Inequalities: e.g., 2x+3>72x + 3 > 72x+3>7
  2. Quadratic Inequalities: e.g., x25x+60x^2 – 5x + 6 \le 0x2−5x+6≤0
  3. Rational Inequalities: e.g., x1x+20\frac{x-1}{x+2} \ge 0x+2x−1​≥0
  4. Absolute Value Inequalities: e.g., x3<5|x-3| < 5∣x−3∣<5

3. Basic Properties of Inequalities

  • Addition/Subtraction: If a>ba > ba>b, then a+c>b+ca + c > b + ca+c>b+c
  • Multiplication/Division:
    • If c>0c > 0c>0, a>b    ac>bca > b \implies ac > bca>b⟹ac>bc
    • If c<0c < 0c<0, a>b    ac<bca > b \implies ac < bca>b⟹ac<bc
  • Transitive Property: If a>ba > ba>b and b>cb > cb>c, then a>ca > ca>c
  • Reversal Rule: Multiply or divide by a negative number → inequality reverses

4. Solving Linear Inequalities

  1. Isolate the variable on one side
  2. Reverse inequality sign if multiplied/divided by negative
  3. Express solution in interval or set notation

Example: Solve 3x5>13x – 5 > 13x−5>13x>6    x>23x > 6 \implies x > 23x>6⟹x>2


5. Solving Quadratic Inequalities

  1. Factorize quadratic expression
  2. Find roots x1,x2x_1, x_2x1​,x2​
  3. Determine intervals using sign chart

Example: Solve x25x+6<0x^2 – 5x + 6 < 0x2−5x+6<0(x2)(x3)<0    2<x<3(x-2)(x-3) < 0 \implies 2 < x < 3(x−2)(x−3)<0⟹2<x<3


6. Absolute Value Inequalities

  • xa<b    ab<x<a+b|x – a| < b \implies a-b < x < a+b∣x−a∣<b⟹a−b<x<a+b
  • xa>b    x<ab or x>a+b|x – a| > b \implies x < a-b \text{ or } x > a+b∣x−a∣>b⟹x<a−b or x>a+b

7. Important Tips

  • Always check the sign of coefficients
  • Use interval method for quadratics and rationals
  • Be careful with negative multipliers
  • Practice word problems involving inequalities

Top 25 Practice Questions – Inequalities

Linear Inequalities

Q1. Solve 2x+5>92x + 5 > 92x+5>9
Q2. Solve 3x723x – 7 \le 23x−7≤2
Q3. Solve 4x+5>1-4x + 5 > 1−4x+5>1
Q4. Solve x2+37\frac{x}{2} + 3 \le 72x​+3≤7
Q5. Solve 52x15 – 2x \ge 15−2x≥1
Q6. Solve 7x+3<4x+127x + 3 < 4x + 127x+3<4x+12
Q7. Solve 3x+211-3x + 2 \le 11−3x+2≤11
Q8. Solve 4x5>3x+24x – 5 > 3x + 24x−5>3x+2
Q9. Solve 2x+13x42x + 1 \le 3x – 42x+1≤3x−4
Q10. Solve 5x+7<2x8-5x + 7 < 2x – 8−5x+7<2x−8

Quadratic & Absolute Value Inequalities

Q11. Solve x25x+60x^2 – 5x + 6 \le 0x2−5x+6≤0
Q12. Solve x2+x6>0x^2 + x – 6 > 0x2+x−6>0
Q13. Solve x29<0x^2 – 9 < 0x2−9<0
Q14. Solve (x3)(x+2)0(x-3)(x+2) \ge 0(x−3)(x+2)≥0
Q15. Solve x4<3|x-4| < 3∣x−4∣<3
Q16. Solve x+25|x+2| \ge 5∣x+2∣≥5
Q17. Solve x24x50x^2 – 4x – 5 \le 0x2−4x−5≤0
Q18. Solve x2+2x8>0x^2 + 2x – 8 > 0x2+2x−8>0
Q19. Solve 2x3<7|2x-3| < 7∣2x−3∣<7
Q20. Solve x1>4|x-1| > 4∣x−1∣>4
Q21. Solve x2x60x^2 – x – 6 \ge 0x2−x−6≥0
Q22. Solve (x1)(x4)<0(x-1)(x-4) < 0(x−1)(x−4)<0
Q23. Solve 3x+28|3x+2| \le 8∣3x+2∣≤8
Q24. Solve x27x+10>0x^2 – 7x + 10 > 0x2−7x+10>0
Q25. Solve x52|x-5| \ge 2∣x−5∣≥2

Answer

Answers – Inequalities

Linear Inequalities Answers

Q1. x>2x > 2x>2
Q2. x3x \le 3x≤3
Q3. x<1x < 1x<1
Q4. x8x \le 8x≤8
Q5. x2x \le 2x≤2
Q6. x<3x < 3x<3
Q7. x3x \ge -3x≥−3
Q8. x>7x > 7x>7
Q9. x5x \ge 5x≥5
Q10. x>1x > 1x>1

Quadratic & Absolute Value Inequalities Answers

Q11. 2x32 \le x \le 32≤x≤3
Q12. x<3x < -3x<−3 or x>2x > 2x>2
Q13. 3<x<3-3 < x < 3−3<x<3
Q14. x2x \le -2x≤−2 or x3x \ge 3x≥3
Q15. 1<x<71 < x < 71<x<7
Q16. x7x \le -7x≤−7 or x3x \ge 3x≥3
Q17. 1x5-1 \le x \le 5−1≤x≤5
Q18. x<4x < -4x<−4 or x>2x > 2x>2
Q19. 2<x<5-2 < x < 5−2<x<5
Q20. x<3x < -3x<−3 or x>5x > 5x>5
Q21. x2x \le -2x≤−2 or x3x \ge 3x≥3
Q22. 1<x<41 < x < 41<x<4
Q23. 10/3x2-10/3 \le x \le 2−10/3≤x≤2
Q24. x<2x < 2x<2 or x>5x > 5x>5
Q25. x3x \le 3x≤3 or x7x \ge 7x≥7