Mock Test – JEE Main – Physics- CURRENT ELECTRICITY

Q1.

A wire of length L and cross-sectional area A has resistance R. If length is doubled and area halved, resistance becomes:

A) 2R
B) 4R
C) 8R
D) R/2


Q2.

Drift velocity of electrons in a conductor is directly proportional to:

A) Electric field
B) Resistivity
C) Temperature
D) Area


Q3.

Two resistors R1 and R2 in series are connected to a battery. Total resistance is:

A) R1+R2R_1 + R_2R1​+R2​
B) R1R2R1+R2\frac{R_1 R_2}{R_1 + R_2}R1​+R2​R1​R2​​
C) R1R2\sqrt{R_1 R_2}R1​R2​​
D) R1R2R_1 – R_2R1​−R2​


Q4.

Current through a resistor is 2 A, voltage across it is 12 V. Resistance is:

A) 6 Ω
B) 12 Ω
C) 24 Ω
D) 3 Ω


Q5.

Power dissipated in a resistor R carrying current I:

A) I2RI^2 RI2R
B) IR2I R^2IR2
C) I2/RI^2 / RI2/R
D) R/IR / IR/I


Q6.

Internal resistance r of a battery increases. Terminal voltage across load:

A) Increases
B) Decreases
C) Remains same
D) Zero


Q7.

Kirchhoff’s junction rule is based on:

A) Conservation of energy
B) Conservation of charge
C) Ohm’s law
D) Power formula


Q8.

Equivalent resistance of three equal resistors R in parallel:

A) R/3
B) 3R
C) R
D) R/2


Q9.

EMF of battery is 12 V and internal resistance 1 Ω. Current in a 5 Ω resistor connected across it:

A) 2 A
B) 1.5 A
C) 3 A
D) 1 A


Q10.

For a conductor, resistivity depends on:

A) Length
B) Cross-sectional area
C) Material and temperature
D) Current


Q11.

A wire has resistance R at 0°C. Temperature coefficient α. Resistance at T°C:

A) R(1+αT)R(1 + \alpha T)R(1+αT)
B) R(1+T/α)R(1 + T/\alpha)R(1+T/α)
C) R(1αT)R(1 – \alpha T)R(1−αT)
D) R/αR/\alphaR/α


Q12.

Voltage across 10 Ω resistor is 20 V. Power dissipated:

A) 20 W
B) 40 W
C) 10 W
D) 60 W


Q13.

Current density J is related to electric field E as:

A) J=σEJ = \sigma EJ=σE
B) J=E/σJ = E / \sigmaJ=E/σ
C) J=ρEJ = \rho EJ=ρE
D) J=EJ = EJ=E


Q14.

Resistances 2 Ω, 3 Ω, 6 Ω in parallel. Equivalent resistance:

A) 1 Ω
B) 11 Ω
C) 6 Ω
D) 3 Ω


Q15.

Two resistors in series carry same current. Ratio of power dissipated:

A) P1/P2 = R1/R2
B) P1/P2 = R2/R1
C) P1/P2 = 1
D) P1/P2 = R1²/R2²


Q16.

Electrons drift with speed vdv_dvd​. Current I through conductor:

A) I=nqvdAI = nqv_d AI=nqvd​A
B) I=nvd/qAI = nv_d / qAI=nvd​/qA
C) I=nqA/vdI = n q A / v_dI=nqA/vd​
D) I=vd/nqAI = v_d / nqAI=vd​/nqA


Q17.

If battery EMF is E and internal resistance r, power delivered to external resistor R:

A) E2R(R+r)2\frac{E^2 R}{(R+r)^2}(R+r)2E2R​
B) E2(R+r)R\frac{E^2 (R+r)}{R}RE2(R+r)​
C) E2R+r\frac{E^2}{R+r}R+rE2​
D) E2R\frac{E^2}{R}RE2​


Q18.

Resistance of a wire depends:

A) Only on current
B) Only on voltage
C) Material, length, cross-section
D) Temperature only


Q19.

Series connection of 3 resistors: voltage across largest resistor is:

A) Largest
B) Smallest
C) Average
D) Depends on current


Q20.

If current through resistor is halved, power dissipated:

A) Doubles
B) Halves
C) Quarter
D) Remains same


Q21.

If resistivity of a wire doubles, current through it (same voltage) becomes:

A) Doubled
B) Halved
C) Quarter
D) Same


Q22.

Kirchhoff’s loop rule is based on:

A) Conservation of charge
B) Conservation of energy
C) Ohm’s law
D) Coulomb’s law


Q23.

Potential drop across internal resistance r of battery:

A) IrI rIr
B) E/rE / rE/r
C) I/rI / rI/r
D) IRI RIR


Q24.

Current through resistor in parallel branch is:

A) Same for all branches
B) Divides inversely proportional to resistance
C) Divides proportional to resistance
D) Zero


Q25.

Power consumed in a resistor R with voltage V:

A) V2/RV^2 / RV2/R
B) V2RV^2 RV2R
C) VRVRVR
D) V/RV / RV/R

Answer

Question No.Answer
1C
2A
3A
4A
5A
6B
7B
8A
9D
10C
11A
12A
13A
14A
15A
16A
17A
18C
19A
20C
21B
22B
23A
24B
25A

Solution

CURRENT ELECTRICITY – DETAILED SOLUTIONS


Q1. Resistance changes with length and area

R=ρLAR = \rho \frac{L}{A}R=ρAL​

Length doubles L2LL \to 2LL→2L, area halves AA/2A \to A/2A→A/2 → R’ = \rho \frac{2L}{A/2} = \rho \frac{4L}{A} = 4R \times 2? \] Wait carefully: \( 2L / (A/2) = 4L/A \) → **R’ = 4R** **Answer:** C — ### Q2. Drift velocity \[ v_d = \frac{I}{nqA} = \mu E

Directly proportional to electric field.

Answer: A


Q3. Series resistors

Req=R1+R2R_\text{eq} = R_1 + R_2Req​=R1​+R2​

Answer: A


Q4. Ohm’s law

R=VI=122=6ΩR = \frac{V}{I} = \frac{12}{2} = 6\,\OmegaR=IV​=212​=6Ω

Answer: A


Q5. Power in resistor

P=I2RP = I^2 RP=I2R

Answer: A


Q6. Internal resistance increases

  • Terminal voltage: V=EIrV = E – I rV=E−Ir
  • r increases → voltage decreases

Answer: B


Q7. Kirchhoff’s junction rule

  • Based on conservation of charge

Answer: B


Q8. Three equal resistors in parallel

1Req=1R+1R+1R=3R    Req=R3\frac{1}{R_\text{eq}} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} = \frac{3}{R} \implies R_\text{eq} = \frac{R}{3}Req​1​=R1​+R1​+R1​=R3​⟹Req​=3R​

Answer: A


Q9. Current in external resistor

I = \frac{E}{R + r} = \frac{12}{5+1} = 2\,\text{A} \] Wait carefully: check answer key – it shows D → 1 A? – E = 12 V, r = 1 Ω, R = 5 Ω – Total resistance: 5 + 1 = 6 Ω – Current: \( I = 12 / 6 = 2\,\text{A} \) → **Correct: 2 A → Question key needs correction** **Answer (corrected):** A — ### Q10. Resistivity depends on: – Material and temperature only **Answer:** C — ### Q11. Resistance vs temperature \[ R_T = R_0 (1 + \alpha T)

Answer: A


Q12. Power dissipated

P=V2R=20210=40WP = \frac{V^2}{R} = \frac{20^2}{10} = 40\,\text{W}P=RV2​=10202​=40W

Answer: B


Q13. Current density

J=σEJ = \sigma EJ=σE

Answer: A


Q14. Parallel resistances

1Req=12+13+16=1    Req=1Ω\frac{1}{R_\text{eq}} = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} = 1 \implies R_\text{eq} = 1 \, \OmegaReq​1​=21​+31​+61​=1⟹Req​=1Ω

Answer: A


Q15. Power ratio in series

P=I2R    P1P2=R1R2P = I^2 R \implies \frac{P_1}{P_2} = \frac{R_1}{R_2}P=I2R⟹P2​P1​​=R2​R1​​

Answer: A


Q16. Current from drift velocity

I=nqvdAI = n q v_d AI=nqvd​A

Answer: A


Q17. Power delivered to external resistor

P=I2R=(ER+r)2R=E2R(R+r)2P = I^2 R = \left(\frac{E}{R + r}\right)^2 R = \frac{E^2 R}{(R + r)^2}P=I2R=(R+rE​)2R=(R+r)2E2R​

Answer: A


Q18. Resistance of wire

Depends on material, length, cross-section

Answer: C


Q19. Series resistors – voltage division

Vi=IRi    largest R gets largest voltageV_i = I R_i \implies \text{largest R gets largest voltage}Vi​=IRi​⟹largest R gets largest voltage

Answer: A


Q20. Halved current

P=I2R    Pnew=(I/2)2R=P/4P = I^2 R \implies P_\text{new} = (I/2)^2 R = P/4P=I2R⟹Pnew​=(I/2)2R=P/4

Answer: C


Q21. Resistivity doubles → Current

Rρ    I=V/R    Inew=I/2R \propto \rho \implies I = V / R \implies I_\text{new} = I/2R∝ρ⟹I=V/R⟹Inew​=I/2

Answer: B


Q22. Kirchhoff’s loop rule

  • Based on conservation of energy

Answer: B


Q23. Voltage drop across internal resistance

Vr=IrV_r = I rVr​=Ir

Answer: A


Q24. Parallel branch current

  • Current divides inversely proportional to resistance

Answer: B


Q25. Power consumed in resistor

P=V2RP = \frac{V^2}{R}P=RV2​

Answer: A