Mock Test – JEE Main – Physics- KINETIC THEORY OF GASES

Q1.

The root mean square (rms) speed of a gas molecule is given by:

A) 3kTm\sqrt{\frac{3kT}{m}}m3kT​​
B) 2kTm\sqrt{\frac{2kT}{m}}m2kT​​
C) kT2m\sqrt{\frac{kT}{2m}}2mkT​​
D) kTm\sqrt{\frac{kT}{m}}mkT​​


Q2.

The pressure of an ideal gas is due to:

A) Intermolecular attraction
B) Collisions of molecules with walls
C) Gravitational force on molecules
D) Vibrations of molecules


Q3.

The average kinetic energy of a gas molecule is proportional to:

A) Pressure
B) Temperature
C) Volume
D) Mass


Q4.

For 1 mole of an ideal gas, internal energy depends on:

A) Temperature only
B) Pressure only
C) Volume only
D) Both P and V


Q5.

A gas contains molecules of mass mmm and rms speed vvv. The total kinetic energy of N molecules is:

A) 12Nmv2\frac{1}{2} Nm v^221​Nmv2
B) 32Nmv2\frac{3}{2} Nm v^223​Nmv2
C) 12mv2\frac{1}{2} m v^221​mv2
D) 32kT\frac{3}{2} kT23​kT


Q6.

Pressure of 1 mole of ideal gas at temperature T and volume V:

A) RTV\frac{RT}{V}VRT​
B) 2RT3V\frac{2RT}{3V}3V2RT​
C) RT2V\frac{RT}{2V}2VRT​
D) 3RT2V\frac{3RT}{2V}2V3RT​


Q7.

Most probable speed of molecules in ideal gas:

A) 2kTm\sqrt{\frac{2kT}{m}}m2kT​​
B) 3kTm\sqrt{\frac{3kT}{m}}m3kT​​
C) kTm\sqrt{\frac{kT}{m}}mkT​​
D) 5kTm\sqrt{\frac{5kT}{m}}m5kT​​


Q8.

Degrees of freedom of a diatomic molecule at room temperature:

A) 3
B) 5
C) 6
D) 2


Q9.

Average translational kinetic energy per molecule is:

A) 12kT\frac{1}{2} kT21​kT
B) 32kT\frac{3}{2} kT23​kT
C) 52kT\frac{5}{2} kT25​kT
D) 3kT3 kT3kT


Q10.

A gas molecule has mass mmm and average kinetic energy EEE. The rms speed is:

A) 2Em\sqrt{\frac{2E}{m}}m2E​​
B) 3Em\sqrt{\frac{3E}{m}}m3E​​
C) Em\sqrt{\frac{E}{m}}mE​​
D) E2m\sqrt{\frac{E}{2m}}2mE​​


Q11.

Internal energy of monoatomic ideal gas per mole:

A) 32RT\frac{3}{2} RT23​RT
B) 52RT\frac{5}{2} RT25​RT
C) 72RT\frac{7}{2} RT27​RT
D) 2RT2 RT2RT


Q12.

Ratio of specific heats for monoatomic ideal gas (γ=Cp/Cv\gamma = C_p/C_vγ=Cp​/Cv​):

A) 5/3
B) 7/5
C) 3/2
D) 4/3


Q13.

The root mean square speed of oxygen molecule at 27°C is approximately 480 m/s. If temperature doubles, rms speed becomes:

A) 960 m/s
B) 680 m/s
C) 480 m/s
D) 240 m/s


Q14.

The gas exerts pressure on the wall:

A) Only when molecules move in x-direction
B) Due to collisions in all directions
C) Only when velocity is maximum
D) Only near the wall


Q15.

If the number of molecules in a container is doubled at same temperature:

A) rms speed doubles
B) Pressure doubles
C) Volume doubles
D) Internal energy halves


Q16.

Degrees of freedom for nonlinear triatomic molecule:

A) 3
B) 5
C) 6
D) 9


Q17.

Mean free path is:

A) Distance travelled before collision
B) Average distance between collisions
C) Speed × time
D) Twice the molecular radius


Q18.

Time between successive collisions of a gas molecule is:

A) Mean free path ÷ rms speed
B) rms speed ÷ mean free path
C) 2 × mean free path ÷ rms speed
D) Half of rms speed × mean free path


Q19.

Boltzmann constant k relates:

A) Gas constant to Avogadro’s number
B) Pressure and volume
C) Temperature and volume
D) Energy and mass


Q20.

Fraction of molecules moving with speed between vvv and v+dvv + dvv+dv follows:

A) Maxwell-Boltzmann distribution
B) Bernoulli distribution
C) Gaussian distribution
D) Fermi-Dirac distribution


Q21.

For a monoatomic gas, if temperature is halved:

A) rms speed halves
B) rms speed decreases by √2
C) rms speed decreases by 1/4
D) rms speed remains same


Q22.

Kinetic theory assumes molecules:

A) Have negligible volume, elastic collisions
B) Attract each other strongly
C) Move in circles
D) Always at rest


Q23.

If the pressure and volume are doubled, temperature:

A) Doubles
B) Remains same
C) Quadruples
D) Halves


Q24.

Average translational kinetic energy per mole for a gas:

A) 32kT\frac{3}{2} kT23​kT
B) 32RT\frac{3}{2} RT23​RT
C) 52RT\frac{5}{2} RT25​RT
D) 2RT2 RT2RT


Q25.

Internal energy of a diatomic gas at room temperature:

A) 32RT\frac{3}{2} RT23​RT
B) 52RT\frac{5}{2} RT25​RT
C) 3RT3 RT3RT
D) 7/2RT7/2 RT7/2RT

Answer

Question No.Answer
1A
2B
3B
4A
5B
6A
7A
8B
9B
10A
11A
12A
13B
14B
15B
16D
17B
18A
19A
20A
21B
22A
23A
24B
25B

Solution

KINETIC THEORY OF GASES – DETAILED SOLUTIONS


Q1. RMS speed of a gas molecule

vrms=3kTmv_\text{rms} = \sqrt{\frac{3kT}{m}}vrms​=m3kT​​

This is the standard formula.

Answer: A


Q2. Source of pressure in an ideal gas

Pressure arises due to collisions of molecules with the walls.

Answer: B


Q3. Average kinetic energy proportionality

Eavg=32kTE_\text{avg} = \frac{3}{2} kTEavg​=23​kT

Depends only on temperature.

Answer: B


Q4. Internal energy of 1 mole of ideal gas

Depends only on temperature, not on pressure or volume:U=32RT(monoatomic)U = \frac{3}{2} RT \quad \text{(monoatomic)}U=23​RT(monoatomic)

Answer: A


Q5. Total kinetic energy of N molecules

Etotal=12mvrms2×Nfor each molecule?E_\text{total} = \frac{1}{2} m v_\text{rms}^2 \times N \quad \text{for each molecule?}Etotal​=21​mvrms2​×Nfor each molecule?

Actually, for RMS speed vrmsv_\text{rms}vrms​:Etotal=12mNvrms2E_\text{total} = \frac{1}{2} m N v_\text{rms}^2Etotal​=21​mNvrms2​

Answer: B


Q6. Pressure of 1 mole of ideal gas

PV=RT    P=RTVPV = RT \implies P = \frac{RT}{V}PV=RT⟹P=VRT​

Answer: A


Q7. Most probable speed vpv_pvp​

vp=2kTmv_p = \sqrt{\frac{2kT}{m}}vp​=m2kT​​

Answer: A


Q8. Degrees of freedom of a diatomic molecule at room temp

  • Translational: 3
  • Rotational: 2
  • Vibrational modes negligible at room temp

\Rightarrow⇒ Total f=5f = 5f=5

Answer: B


Q9. Average translational kinetic energy per molecule

Etrans=32kT\langle E_\text{trans} \rangle = \frac{3}{2} kT⟨Etrans​⟩=23​kT

Answer: B


Q10. RMS speed from average kinetic energy

E=12mvrms2    vrms=2EmE = \frac{1}{2} m v_\text{rms}^2 \implies v_\text{rms} = \sqrt{\frac{2E}{m}}E=21​mvrms2​⟹vrms​=m2E​​

Answer: A


Q11. Internal energy per mole (monoatomic)

U=32RTU = \frac{3}{2} RTU=23​RT

Answer: A


Q12. Ratio of specific heats for monoatomic gas

γ=CpCv=5/2R3/2R=5/3\gamma = \frac{C_p}{C_v} = \frac{5/2 R}{3/2 R} = 5/3γ=Cv​Cp​​=3/2R5/2R​=5/3

Answer: A


Q13. RMS speed at doubled temperature

vrmsT    vnew=4802680m/sv_\text{rms} \propto \sqrt{T} \implies v_\text{new} = 480 \sqrt{2} \approx 680\,\text{m/s}vrms​∝T​⟹vnew​=4802​≈680m/s

Answer: B


Q14. Pressure on wall due to molecules

  • Collisions occur in all directions
  • Contribution along x, y, z combined

Answer: B


Q15. Doubling number of molecules at same T

  • RMS speed depends on temperature → unchanged
  • Pressure P=NkTVP = \frac{NkT}{V}P=VNkT​ → doubles

Answer: B


Q16. Degrees of freedom of nonlinear triatomic molecule

  • Translational: 3
  • Rotational: 3
  • Vibrational: neglected at room temp

Total f=6f = 6f=6

Answer: D


Q17. Mean free path

  • Average distance travelled between successive collisions

Answer: B


Q18. Time between successive collisions

t=mean free pathvrmst = \frac{\text{mean free path}}{v_\text{rms}}t=vrms​mean free path​

Answer: A


Q19. Boltzmann constant

k=RNAk = \frac{R}{N_A}k=NA​R​

Relates gas constant to Avogadro number

Answer: A


Q20. Distribution of molecular speeds

  • Follows Maxwell-Boltzmann distribution

Answer: A


Q21. Temperature halved

vrmsT    vnew=vold/2v_\text{rms} \propto \sqrt{T} \implies v_\text{new} = v_\text{old}/\sqrt{2}vrms​∝T​⟹vnew​=vold​/2​

Answer: B


Q22. Assumptions of kinetic theory

  • Molecules have negligible volume
  • Collisions are elastic

Answer: A


Q23. Pressure & volume doubled

PV=nRT    T doublesPV = nRT \implies T \text{ doubles}PV=nRT⟹T doubles

Answer: A


Q24. Average translational kinetic energy per mole

Eavg=32RTE_\text{avg} = \frac{3}{2} RTEavg​=23​RT

Answer: B


Q25. Internal energy of diatomic gas (room temp)

  • Translational: 3/2 RT
  • Rotational: RT (2 × 1/2 RT)
  • Total: 5/2 RT

Answer: B