NEET Electromagnetic Waves PYQs | 2013–2025

2025

Q1. Explain the nature of electromagnetic waves and how electric and magnetic fields are oriented with respect to each other.

Q2. Derive the wave equation for electromagnetic waves in free space.

Q3. A plane electromagnetic wave has electric field amplitude E₀. Find the corresponding magnetic field amplitude B₀.


2024

Q1. State Maxwell’s equations in free space and explain their significance in predicting electromagnetic waves.

Q2. Explain the speed of electromagnetic waves in vacuum using permittivity (ε₀) and permeability (μ₀).

Q3. Give examples of electromagnetic waves in the spectrum and their applications.


2023

Q1. Derive the relation between the energy densities of electric and magnetic fields in an electromagnetic wave.

Q2. A monochromatic plane EM wave has frequency f. Find its wavelength in vacuum.

Q3. Explain the Poynting vector and its significance in electromagnetic wave propagation.


2022

Q1. Show that the electric and magnetic fields of an EM wave are perpendicular to each other and to the direction of propagation.

Q2. Derive the expression for the energy flux of an EM wave.

Q3. Explain how electromagnetic waves carry energy and momentum.


2021

Q1. Write the expressions for the electric and magnetic fields of an electromagnetic wave propagating in the x-direction.

Q2. Explain the concept of polarization of electromagnetic waves with an example.

Q3. A plane EM wave has an electric field E=E0sin(kxωt)E = E_0 \sin(kx – \omega t)E=E0​sin(kx−ωt). Determine the magnetic field.


2020

Q1. Derive the velocity of electromagnetic waves in free space using Maxwell’s equations.

Q2. Explain the relation between the frequency and wavelength of electromagnetic waves.

Q3. Discuss the transverse nature of electromagnetic waves.


2019

Q1. A plane EM wave has electric field amplitude 100 V/m. Calculate the magnetic field amplitude.

Q2. Explain the energy carried by an electromagnetic wave.

Q3. Discuss the spectrum of electromagnetic waves with two real-life applications.


2018

Q1. Derive the wave equation for the electric field of an electromagnetic wave.

Q2. Show that the average energy densities of the electric and magnetic fields are equal.

Q3. Explain why electromagnetic waves do not require a medium for propagation.


2017

Q1. Derive the expression for the Poynting vector for an electromagnetic wave.

Q2. Explain the concept of energy flux in EM waves.

Q3. List the different regions of the electromagnetic spectrum with their approximate wavelength ranges.


2016

Q1. Show that in an EM wave, the electric and magnetic fields are in phase.

Q2. A plane electromagnetic wave propagates in vacuum. Find the relation between E₀ and B₀.

Q3. Explain the significance of Maxwell’s prediction of electromagnetic waves.


2015

Q1. Derive the relation c = 1/√(μ₀ε₀) for the speed of electromagnetic waves in vacuum.

Q2. Explain how EM waves transport energy.

Q3. Describe the different types of electromagnetic waves and their uses.


2014

Q1. Show that EM waves are transverse in nature.

Q2. Derive the wave equation for magnetic field B in free space.

Q3. Explain how electric and magnetic fields are mutually perpendicular in an EM wave.


2013

Q1. A plane EM wave is described by E=E0sin(kxωt)E = E_0 \sin(kx – \omega t)E=E0​sin(kx−ωt). Find the corresponding magnetic field.

Q2. State Maxwell’s prediction about electromagnetic waves.

Q3. Explain why electromagnetic waves do not need a material medium for propagation.

Answer

Electromagnetic Waves — Solutions (2025 → 2013)


2025

Q1. Nature of EM waves and orientation of E and B.

Solution:

  • EM waves consist of oscillating electric and magnetic fields, perpendicular to each other and to the direction of propagation.
  • If wave propagates along x-axis:
    Ey\vec{E} \parallel yE∥y, Bz\vec{B} \parallel zB∥z, EBpropagation\vec{E} \perp \vec{B} \perp \text{propagation}E⊥B⊥propagation.

Q2. Wave equation derivation.

Solution:

  • Maxwell’s equations in free space:
    ×E=Bt\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}∇×E=−∂t∂B​, ×B=μ0ε0Et\nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}∇×B=μ0​ε0​∂t∂E​
  • Taking curl and using vector identities →

2E=μ0ε02Et2,2B=μ0ε02Bt2\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}, \quad \nabla^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}∇2E=μ0​ε0​∂t2∂2E​,∇2B=μ0​ε0​∂t2∂2B​


Q3. Magnetic field amplitude B₀ from E₀.B0=E0c,c=3×108 m/sB_0 = \frac{E_0}{c}, \quad c = 3\times10^8 \text{ m/s}B0​=cE0​​,c=3×108 m/s


2024

Q1. Maxwell’s equations significance.

  • Gauss’s law: E=0\nabla \cdot \vec{E} = 0∇⋅E=0 (no free charge in vacuum)
  • Gauss for B: B=0\nabla \cdot \vec{B} = 0∇⋅B=0
  • Faraday’s law: ×E=Bt\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}∇×E=−∂t∂B​
  • Ampere-Maxwell: ×B=μ0ε0Et\nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t}∇×B=μ0​ε0​∂t∂E​

Q2. Speed of EM waves:c=1μ0ε0c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}c=μ0​ε0​​1​

Q3. EM spectrum examples:

  • Radio waves → communication
  • Microwaves → cooking
  • X-rays → medical imaging

2023

Q1. Energy densities:

  • Electric: uE=12ε0E2u_E = \frac{1}{2} \varepsilon_0 E^2uE​=21​ε0​E2
  • Magnetic: uB=B22μ0u_B = \frac{B^2}{2\mu_0}uB​=2μ0​B2​
  • For EM wave: uE=uBu_E = u_BuE​=uB​ → total energy density u=ε0E2u = \varepsilon_0 E^2u=ε0​E2

Q2. Wavelength:λ=cf\lambda = \frac{c}{f}λ=fc​

Q3. Poynting vector:
S=1μ0(E×B)\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})S=μ0​1​(E×B), represents energy flux per unit area per unit time.


2022

Q1. E and B perpendicular to each other and to propagation direction.

Q2. Energy flux (average power per unit area):S=1μ0ErmsBrms=cε0Erms2\langle S \rangle = \frac{1}{\mu_0} E_{\text{rms}} B_{\text{rms}} = c \varepsilon_0 E_{\text{rms}}^2⟨S⟩=μ0​1​Erms​Brms​=cε0​Erms2​

Q3. EM waves carry energy (u=ε0E2u = \varepsilon_0 E^2u=ε0​E2) and momentum (p=u/cp = u/cp=u/c).


2021

Q1. Wave propagating along x-axis:E=E0y^sin(kxωt),B=B0z^sin(kxωt)\vec{E} = E_0 \hat{y} \sin(kx – \omega t), \quad \vec{B} = B_0 \hat{z} \sin(kx – \omega t)E=E0​y^​sin(kx−ωt),B=B0​z^sin(kx−ωt)

Q2. Polarization: Electric field oscillates in a particular direction. Example: Light through Polaroid.

Q3. Magnetic field from electric field:B=EcB = \frac{E}{c}B=cE​


2020

Q1. Velocity from Maxwell: c=1μ0ε0c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}c=μ0​ε0​​1​

Q2. Relation: v=fλv = f \lambdav=fλ

Q3. EM waves are transverse because EBdirection of propagation\vec{E} \perp \vec{B} \perp \text{direction of propagation}E⊥B⊥direction of propagation


2019

Q1. B₀ from E₀ = 100 V/m:B0=E0c=1003×108=3.33×107 TB_0 = \frac{E_0}{c} = \frac{100}{3 \times 10^8} = 3.33 \times 10^{-7} \text{ T}B0​=cE0​​=3×108100​=3.33×10−7 T

Q2. Energy carried: u=ε0E2u = \varepsilon_0 E^2u=ε0​E2

Q3. Spectrum applications:

  • Radio → communication
  • Microwaves → cooking

2018

Q1. Wave equation for E:2E=μ0ε02Et2\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}∇2E=μ0​ε0​∂t2∂2E​

Q2. Average energy densities equal:
uE=uB=12ε0E02\langle u_E \rangle = \langle u_B \rangle = \frac{1}{2} \varepsilon_0 E_0^2⟨uE​⟩=⟨uB​⟩=21​ε0​E02​

Q3. EM waves do not need medium → can propagate in vacuum.


2017

Q1. Poynting vector: S=1μ0(E×B)\vec{S} = \frac{1}{\mu_0} (\vec{E} \times \vec{B})S=μ0​1​(E×B)

Q2. Energy flux = magnitude of S → power per unit area

Q3. EM spectrum regions:

  • Radio: λ > 1 m
  • Microwaves: λ ≈ 1 cm
  • Infrared: λ ≈ 10⁻⁶ m
  • Visible: λ = 400–700 nm
  • UV, X-rays, γ-rays

2016

Q1. E and B in phase → peak of E coincides with peak of B.

Q2. Relation: B0=E0/cB_0 = E_0 / cB0​=E0​/c

Q3. Maxwell predicted EM waves travel at speed c, combining electricity, magnetism, and light.


2015

Q1. c = 1/√(μ₀ε₀)

Q2. EM waves transport energy: u=ε0E2u = \varepsilon_0 E^2u=ε0​E2

Q3. Types of EM waves: Radio, Microwave, IR, Visible, UV, X-rays, γ-rays → communication, heating, imaging.


2014

Q1. EM waves are transverse → E ⊥ B ⊥ propagation

Q2. Wave equation for B:
2B=μ0ε02Bt2\nabla^2 \vec{B} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{B}}{\partial t^2}∇2B=μ0​ε0​∂t2∂2B​

Q3. E and B mutually perpendicular → B=1ck^×E\vec{B} = \frac{1}{c} \hat{k} \times \vec{E}B=c1​k^×E


2013

Q1. Magnetic field from E = E0sin(kxωt)E_0 \sin(kx – \omega t)E0​sin(kx−ωt):B=E0csin(kxωt)B = \frac{E_0}{c} \sin(kx – \omega t)B=cE0​​sin(kx−ωt)

Q2. Maxwell’s prediction: Changing E and B → self-propagating EM waves.

Q3. EM waves propagate without a medium → vacuum propagation.

disclaimer:

“Questions are based on past NEET exams and are for educational purposes only.”