NEET Experimental Skills PYQs | 2013–2025

Experimental Skills — Solutions (2025 → 2013)


2025

Q1. Focal length of convex lens:

  • Lens formula: 1f=1v1u\frac{1}{f} = \frac{1}{v} – \frac{1}{u}f1​=v1​−u1​
  • Measure object distance uuu and image distance vvv.
  • Calculate fff. Average over multiple trials.

Q2. Verification of Ohm’s law:

  • Connect a resistor in series with a battery and ammeter.
  • Measure current III for different applied voltages VVV.
  • Plot VVV vs III. Straight line → Ohm’s law verified.

Q3. Specific heat capacity (method of mixtures):

  • Mix heated solid with water in calorimeter.
  • Measure initial and final temperatures.

mscs(TsTf)=mwcw(TfTw)m_s c_s (T_s – T_f) = m_w c_w (T_f – T_w)ms​cs​(Ts​−Tf​)=mw​cw​(Tf​−Tw​)

  • Solve for csc_scs​.

2024

Q1. Resistivity using meter bridge:ρ=RLAL\rho = \frac{R}{L} \cdot \frac{A}{L’}ρ=LR​⋅L′A​

  • Balance the bridge using galvanometer, measure lengths l1l_1l1​, l2l_2l2​.

Q2. Internal resistance using potentiometer:r=VVABIr = \frac{V – V_{AB}}{I}r=IV−VAB​​

  • Connect cell, adjust potentiometer for zero deflection → measure balancing length.

Q3. Acceleration due to gravity using simple pendulum:T=2πlg    g=4π2lT2T = 2 \pi \sqrt{\frac{l}{g}} \implies g = \frac{4 \pi^2 l}{T^2}T=2πgl​​⟹g=T24π2l​

  • Measure lll and TTT → calculate ggg.

2023

Q1. Wavelength using diffraction grating:λ=dsinθn\lambda = \frac{d \sin \theta}{n}λ=ndsinθ​

  • Measure diffraction angle θ\thetaθ, grating spacing ddd, order nnn.

Q2. e/m ratio using Thomson’s method:em=2VB2r2\frac{e}{m} = \frac{2V}{B^2 r^2}me​=B2r22V​

  • Measure radius rrr of electron path, voltage VVV, magnetic field BBB.

Q3. Conservation of energy:

  • Using pendulum: maximum potential energy = maximum kinetic energy → measure heights and velocity.

2022

Q1. Refractive index using travelling microscope:μ=real thicknessapparent thickness\mu = \frac{\text{real thickness}}{\text{apparent thickness}}μ=apparent thicknessreal thickness​

  • Measure apparent shift using microscope, compare with real thickness.

Q2. Coefficient of viscosity using Stoke’s method:η=29r2g(ρsρl)v\eta = \frac{2}{9} \frac{r^2 g (\rho_s – \rho_l)}{v}η=92​vr2g(ρs​−ρl​)​

  • Drop spheres in liquid, measure terminal velocity vvv, calculate η\etaη.

Q3. Focal length of concave mirror (distant object):

  • Use distant object → parallel rays focus at principal focus.
  • Measure distance from mirror → focal length.

2021

Q1. Focal length of lens combination:

  • Use lens formula for each lens, combine:

1F=1f1+1f2df1f2\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2} – \frac{d}{f_1 f_2}F1​=f1​1​+f2​1​−f1​f2​d​

Q2. Surface tension using capillary rise:T=hρgr2T = \frac{h \rho g r}{2}T=2hρgr​

  • Measure capillary rise hhh, radius rrr, liquid density ρ\rhoρ.

Q3. Modulus of rigidity using torsional pendulum:T=2πIC    C=4π2IT2T = 2 \pi \sqrt{\frac{I}{C}} \implies C = \frac{4 \pi^2 I}{T^2}T=2πCI​​⟹C=T24π2I​

  • Measure period TTT, moment of inertia III → calculate rigidity CCC.

2020

Q1. Specific resistance using Carey Foster bridge:ρ=kl1l2l\rho = k \frac{l_1 – l_2}{l}ρ=kll1​−l2​​

  • Measure bridge balance lengths → calculate ρ\rhoρ.

Q2. Velocity of sound using resonance tube:v=4Lfv = 4 L fv=4Lf

  • Adjust water level until resonance, measure length LLL, known frequency fff.

Q3. Energy stored in spring (Hooke’s law):E=12kx2E = \frac{1}{2} k x^2E=21​kx2

  • Measure extension xxx for known force → determine k → calculate energy.

2019

Q1. Wavelength using Newton’s rings:λ=Dn+p2Dn24pR\lambda = \frac{D_{n+p}^2 – D_n^2}{4pR}λ=4pRDn+p2​−Dn2​​

  • Measure diameters of rings DnD_nDn​, radius of curvature RRR.

Q2. Frequency of AC mains using sonometer:

  • Adjust sonometer wire → produce stationary waves → frequency = n × (wave speed / 2L)

Q3. Laws of reflection/refraction:

  • Measure incident and reflected/refracted angles → verify: i=ri = ri=r, n=sini/sinrn = \sin i / \sin rn=sini/sinr

2018

Q1. Resistivity using metre bridge: same as 2024 Q1.

Q2. Coefficient of linear expansion:α=ΔLLΔT\alpha = \frac{\Delta L}{L \Delta T}α=LΔTΔL​

  • Measure initial length, change in length, temperature difference.

Q3. Acceleration due to gravity using free-fall:g=2st2g = \frac{2s}{t^2}g=t22s​

  • Measure distance sss and fall time ttt.

2017

Q1. Focal length of concave lens:

  • Combine with convex lens → measure image distance → apply lens formula.

Q2. Ohm’s law: same as 2025 Q2.

Q3. Work function using photoelectric effect:ϕ=hνeVs\phi = h\nu – eV_sϕ=hν−eVs​

  • Measure stopping potential VsV_sVs​ for known light frequency ν\nuν.

2016

Q1. Focal length using u–v method: f=uvu+vf = \frac{uv}{u+v}f=u+vuv​

  • Measure object distance uuu, image distance vvv.

Q2. Internal resistance using potentiometer: same as 2024 Q2.

Q3. Modulus of elasticity using Searle’s apparatus:

  • Measure extension under known load → calculate Young’s modulus:

Y=FLAΔLY = \frac{F L}{A \Delta L}Y=AΔLFL​


2015

Q1. Refractive index of liquid using convex lens:μ=fairfliquid\mu = \frac{f_{\text{air}}}{f_{\text{liquid}}}μ=fliquid​fair​​

Q2. Resistance using Wheatstone bridge: R=l1l2R2R = \frac{l_1}{l_2} R_2R=l2​l1​​R2​

Q3. Moment of inertia of flywheel: I=ταI = \frac{\tau}{\alpha}I=ατ​


2014

Q1. Focal length by lens displacement:f=L2d24Lf = \frac{L^2 – d^2}{4L}f=4LL2−d2​

  • L = distance between object and screen, d = displacement of lens.

Q2. Ohm’s law verification: V vs I for series and parallel resistors.

Q3. Coefficient of viscosity: same as 2022 Q2.


2013

Q1. Focal length of concave mirror: measure distance from distant object to mirror.

Q2. Conservation of energy: PE at height = KE at bottom → measure velocity/height.

Q3. Specific heat capacity using calorimeter:mc(TfinalTinitial)=mwcw(TwTfinal)m c (T_{final} – T_{initial}) = m_w c_w (T_w – T_{final})mc(Tfinal​−Tinitial​)=mw​cw​(Tw​−Tfinal​)