NEET Optics PYQs | 2013–2025

2025

Q1. Derive the mirror equation for a concave mirror and define the sign conventions.

Q2. A thin convex lens of focal length f = 20 cm forms a real image 30 cm from the lens. Find the object distance.

Q3. Explain total internal reflection and give two practical applications.


2024

Q1. State and derive the lens maker’s formula.

Q2. A ray of light passes from air to glass (n = 1.5). Calculate the critical angle for total internal reflection.

Q3. Explain the phenomenon of dispersion and its effect in a prism.


2023

Q1. Derive the magnification formula for a lens and a mirror.

Q2. A converging lens forms a virtual image of a real object. Describe the conditions for this.

Q3. Explain why a rainbow shows different colors and the role of refraction and reflection.


2022

Q1. Derive the expression for the focal length of a combination of two thin lenses in contact.

Q2. A concave mirror forms an image twice the size of the object. Find the object distance in terms of the focal length.

Q3. Explain the working of a simple microscope and the role of angular magnification.


2021

Q1. Derive the expression for interference fringes in Young’s double-slit experiment.

Q2. Explain diffraction of light at a single slit and derive the condition for minima.

Q3. Discuss the polarization of light by reflection and Brewster’s angle.


2020

Q1. Derive the mirror formula for spherical mirrors.

Q2. A concave lens of focal length 15 cm forms an image 10 cm from the lens. Calculate the object distance.

Q3. Explain the working principle of a telescope and the difference between astronomical and terrestrial telescopes.


2019

Q1. A prism has a refracting angle of 60° and refractive index 1.5. Find the angle of minimum deviation.

Q2. Derive the lens formula and sign conventions for a convex lens.

Q3. Explain constructive and destructive interference with examples.


2018

Q1. Derive the expression for the resolving power of a microscope.

Q2. Derive the expression for the angular magnification of a simple telescope.

Q3. Explain chromatic aberration in lenses and how it can be minimized.


2017

Q1. Explain Huygens’ principle and derive the law of refraction.

Q2. A convex lens forms a real image 3 times the size of the object. Find the object distance in terms of focal length.

Q3. Derive the condition for maxima in interference fringes in Young’s double-slit experiment.


2016

Q1. Derive the expression for focal length of a convex lens in air using the lens maker’s formula.

Q2. A concave mirror of focal length 20 cm forms a virtual image of an object placed 10 cm in front of it. Find the magnification.

Q3. Explain the formation of a rainbow by a spherical water drop.


2015

Q1. Derive the mirror and lens formula using geometrical optics.

Q2. Calculate the critical angle for a water–air interface (n = 1.33).

Q3. Explain the diffraction pattern produced by a single slit.


2014

Q1. A convex lens of focal length 25 cm forms a real image at 50 cm. Find the object distance.

Q2. Explain the dispersion of light by a prism and derive the relation between refractive index and angle of minimum deviation.

Q3. Define polarization of light and describe one method of producing polarized light.


2013

Q1. Derive the formula for magnification of a concave mirror.

Q2. A thin lens produces an image 3 times the size of the object. Determine the object and image distances.

Q3. Explain why the sky appears blue and the phenomenon of Tyndall scattering.

Optics — Solutions (2025 → 2013)


2025

Q1. Mirror equation for concave mirror.

Solution:

  • Using geometry of the mirror:

1f=1v+1u\frac{1}{f} = \frac{1}{v} + \frac{1}{u}f1​=v1​+u1​

  • Sign conventions:
    • u: object distance (positive if on the incoming light side)
    • v: image distance (positive if real, negative if virtual)
    • f: focal length (positive for concave, negative for convex)

Q2. Lens problem: f = 20 cm, v = 30 cm → find u.1f=1v1u    120=1301u\frac{1}{f} = \frac{1}{v} – \frac{1}{u} \implies \frac{1}{20} = \frac{1}{30} – \frac{1}{u}f1​=v1​−u1​⟹201​=301​−u1​

1u=130120=160    u=60 cm\frac{1}{u} = \frac{1}{30} – \frac{1}{20} = -\frac{1}{60} \implies u = -60 \text{ cm}u1​=301​−201​=−601​⟹u=−60 cm

✅ Object is on the same side as image → virtual


Q3. Total internal reflection (TIR):

  • Condition: n1>n2,θi>θcn_1 > n_2, \theta_i > \theta_cn1​>n2​,θi​>θc​
  • Critical angle: θc=sin1(n2/n1)\theta_c = \sin^{-1}(n_2/n_1)θc​=sin−1(n2​/n1​)
  • Applications: Optical fibers, prisms in binoculars.

2024

Q1. Lens maker’s formula:1f=(n1)(1R11R2)\frac{1}{f} = (n – 1) \left( \frac{1}{R_1} – \frac{1}{R_2} \right)f1​=(n−1)(R1​1​−R2​1​)

Q2. Air → glass (n = 1.5), critical angle:
θc=sin1(1/1.5)=41.8\theta_c = \sin^{-1}(1/1.5) = 41.8^\circθc​=sin−1(1/1.5)=41.8∘

Q3. Dispersion: Splitting of white light into colors due to wavelength-dependent refractive index. Prism separates sunlight → spectrum.


2023

Q1. Magnification: m = \frac{h’}{h} = – \frac{v}{u} \] (for mirror) \[ m = \frac{v}{u} \quad (\text{for lens})

Q2. Converging lens forms virtual image: object distance u < f → image on same side as object, upright, magnified.

Q3. Rainbow colors: Refraction + internal reflection in water droplets → dispersion of sunlight.


2022

Q1. Two thin lenses in contact:1F=1f1+1f2\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}F1​=f1​1​+f2​1​

Q2. Concave mirror, image 2× size:
m=2=vu    v=2u|m| = 2 = \frac{v}{u} \implies v = 2u∣m∣=2=uv​⟹v=2u
Mirror formula: 1f=1v+1u=12u+1u=32u    u=32f\frac{1}{f} = \frac{1}{v} + \frac{1}{u} = \frac{1}{2u} + \frac{1}{u} = \frac{3}{2u} \implies u = \frac{3}{2}ff1​=v1​+u1​=2u1​+u1​=2u3​⟹u=23​f

Q3. Simple microscope: magnifying glass, angular magnification: M=1+DfM = 1 + \frac{D}{f}M=1+fD​, D = least distance of distinct vision.


2021

Q1. Young’s double slit:β=λLd(fringe width)\beta = \frac{\lambda L}{d} \quad (\text{fringe width})β=dλL​(fringe width)

Q2. Single slit diffraction minima:asinθ=nλ,n=1,2,3a \sin \theta = n \lambda, \quad n = 1, 2, 3 \dotsasinθ=nλ,n=1,2,3…

Q3. Polarization by reflection: Brewster’s angle: tanθB=n2/n1\tan \theta_B = n_2/n_1tanθB​=n2​/n1​, reflected light is plane-polarized.


2020

Q1. Mirror formula: 1v+1u=1f\frac{1}{v} + \frac{1}{u} = \frac{1}{f}v1​+u1​=f1​

Q2. Concave lens: f = 15 cm, v = -10 cm (virtual image), lens formula:1f=1v1u    115=1101u    u=6 cm\frac{1}{f} = \frac{1}{v} – \frac{1}{u} \implies \frac{1}{15} = -\frac{1}{10} – \frac{1}{u} \implies u = -6 \text{ cm}f1​=v1​−u1​⟹151​=−101​−u1​⟹u=−6 cm

Q3. Telescope: two lenses → objective forms real image, eyepiece magnifies it. Astronomical: inverted image, terrestrial: erect image.


2019

Q1. Prism, A = 60°, n = 1.5 → minimum deviation Dm:n=sinA+Dm2sinA2    Dm=41.8n = \frac{\sin \frac{A + D_m}{2}}{\sin \frac{A}{2}} \implies D_m = 41.8^\circn=sin2A​sin2A+Dm​​​⟹Dm​=41.8∘

Q2. Convex lens: 1f=1v1u\frac{1}{f} = \frac{1}{v} – \frac{1}{u}f1​=v1​−u1​

Q3. Constructive interference: path difference = nλ
Destructive: path difference = (n + ½)λ


2018

Q1. Resolving power of microscope:R=λ2NA,NA=nsinθR = \frac{\lambda}{2NA}, \quad NA = n \sin \thetaR=2NAλ​,NA=nsinθ

Q2. Angular magnification of telescope:M=fofe,fo=objective focal length,fe=eyepiece focal lengthM = \frac{f_o}{f_e}, \quad f_o = \text{objective focal length}, f_e = \text{eyepiece focal length}M=fe​fo​​,fo​=objective focal length,fe​=eyepiece focal length

Q3. Chromatic aberration minimized: Use achromatic doublet (crown + flint lens).


2017

Q1. Huygens principle → law of refraction: wavefront analysis gives Snell’s law:sinisinr=v1v2=n2n1\frac{\sin i}{\sin r} = \frac{v_1}{v_2} = \frac{n_2}{n_1}sinrsini​=v2​v1​​=n1​n2​​

Q2. Convex lens, m = 3 → v = 3u, lens formula → u = 0.5f, v = 1.5f

Q3. Young’s experiment maxima: path difference Δ = nλ → bright fringes.


2016

Q1. Lens maker’s formula: 1f=(n1)(1R11R2)\frac{1}{f} = (n-1) (\frac{1}{R_1} – \frac{1}{R_2})f1​=(n−1)(R1​1​−R2​1​)

Q2. Concave mirror, u = 10 cm, f = 20 cm → magnification:m=v/u,v=fuuf=20 cm,m=2m = -v/u, \quad v = \frac{fu}{u-f} = -20 \text{ cm}, \quad m = 2m=−v/u,v=u−ffu​=−20 cm,m=2

Q3. Rainbow formation: refraction + internal reflection + dispersion in raindrops.


2015

Q1. Mirror & lens formula: 1v+1u=1f\frac{1}{v} + \frac{1}{u} = \frac{1}{f}v1​+u1​=f1​

Q2. Water–air, n = 1.33 → critical angle:
θc=sin1(1/1.33)=48.75\theta_c = \sin^{-1} (1/1.33) = 48.75^\circθc​=sin−1(1/1.33)=48.75∘

Q3. Single slit diffraction minima: asinθ=nλa \sin \theta = n \lambdaasinθ=nλ


2014

Q1. Convex lens: f = 25 cm, v = 50 cm → u = 50 cm

Q2. Prism: n=sinA+Dm2sinA2n = \frac{\sin \frac{A + D_m}{2}}{\sin \frac{A}{2}}n=sin2A​sin2A+Dm​​​

Q3. Polarization: light passes through Polaroid → plane-polarized light


2013

Q1. Concave mirror magnification: m=v/um = -v/um=−v/u

Q2. Lens forms image 3× size → m = 3 = v/u → solve for u, v using lens formula

Q3. Sky appears blue → Rayleigh scattering (short wavelengths scattered more)