NEET Physics and Measurement PYQs | 2013–2025

2025

Q1. Define the SI base units and write the derived units for force, pressure, and energy.

Q2. Explain how to measure the diameter of a small spherical object using a screw gauge.

Q3. A physical quantity is given by Q=V2IRQ = \frac{V^2}{IR}Q=IRV2​. Using dimensional analysis, find the dimensions of QQQ.


2024

Q1. Explain the least count of a vernier caliper and how to measure length using it.

Q2. Determine the percentage error in the measurement of length if the error in vernier caliper reading is ±0.02 cm and length measured is 10 cm.

Q3. The period of a simple pendulum is given by T=2πlgT = 2\pi \sqrt{\frac{l}{g}}T=2πgl​​. Use dimensional analysis to verify this relation.


2023

Q1. Define accuracy, precision, and error in measurement with examples.

Q2. Explain how to measure the thickness of a thin wire using a screw gauge and calculate the mean and standard deviation.

Q3. If Q=m2g/t3Q = m^2 g / t^3Q=m2g/t3, find the dimensions of QQQ.


2022

Q1. Describe the method to measure the volume of an irregular solid using a measuring cylinder.

Q2. Explain random and systematic errors with examples.

Q3. A rod of length 1.2 m is measured using a metre scale with least count 1 mm. Calculate the maximum possible error and percentage error.


2021

Q1. Explain the principle of using a digital vernier caliper for length measurement.

Q2. Determine the dimensional formula of surface tension given by force per unit length.

Q3. Explain how to combine multiple measurements to find the resultant error using the rules of propagation of errors.


2020

Q1. Describe the method to measure the diameter of a thin wire using a travelling microscope.

Q2. Calculate the dimensional formula of energy expressed as E=12mv2E = \frac{1}{2} mv^2E=21​mv2.

Q3. Explain the significance of significant figures in experimental measurements.


2019

Q1. Define fundamental and derived quantities with examples.

Q2. A sphere of radius 5 cm is measured using a screw gauge with least count 0.01 mm. Find the possible error in volume calculation.

Q3. Using dimensional analysis, derive the relation for the period of oscillation of a mass-spring system.


2018

Q1. Explain how to determine the density of a liquid using a pycnometer.

Q2. Find the relative error in measurement of resistance R=V/IR = V/IR=V/I if the errors in voltage and current are 1% and 2% respectively.

Q3. Describe random and systematic errors with suitable examples.


2017

Q1. Explain the procedure to measure the thickness of a thin sheet using a screw gauge.

Q2. Determine the dimensional formula of torque.

Q3. Using least count method, measure the diameter of a small wire and calculate its percentage error.


2016

Q1. Explain how to measure the volume of an irregular body using the displacement method.

Q2. Determine the dimensional formula of pressure.

Q3. A measurement of length 1.25 m is made using a metre scale with least count 1 mm. Find absolute and relative error.


2015

Q1. Explain the method to measure the diameter of a wire using a vernier caliper and screw gauge.

Q2. Using dimensional analysis, find the dimensions of frequency given by f=1Tf = \frac{1}{T}f=T1​.

Q3. Calculate the percentage error if 10 cm length is measured with ±0.05 cm error.


2014

Q1. Explain the difference between accuracy and precision with examples.

Q2. Determine the error in the measurement of area of a rectangle of sides 10 cm and 5 cm, if the least count of the scale is 1 mm.

Q3. Using dimensional analysis, verify the formula for acceleration a=dvdta = \frac{dv}{dt}a=dtdv​.


2013

Q1. Define physical quantities, units, and dimensions.

Q2. Explain the method to measure the diameter of a small spherical body using a screw gauge.

Q3. Using the error propagation rule, calculate the resultant error if Q=XY/ZQ = XY/ZQ=XY/Z and errors in X,Y,ZX, Y, ZX,Y,Z are 1%, 2%, and 1% respectively.

2025

Q1. SI base units and derived units:

  • Base units: Length (m), Mass (kg), Time (s), Electric current (A), Temperature (K), Luminous intensity (cd), Amount of substance (mol).
  • Derived units:
    • Force: F=maF = m aF=ma → kg·m/s² = N
    • Pressure: P=F/AP = F/AP=F/A → N/m² = Pa
    • Energy: E=FdE = F·dE=F⋅d → N·m = J

Q2. Screw gauge measurement:

  • Zero the gauge. Place object between spindle and anvil.
  • Read main scale + circular scale reading → diameter = main + circular reading.

Q3. Dimensional analysis for Q=V2IRQ = \frac{V^2}{IR}Q=IRV2​:

  • V (voltage) = [ML²T⁻³I⁻¹], I (current) = [I], R (resistance) = [ML²T⁻³I⁻²]

[Q]=[V]2[I][R]=[ML2T3I1]2[I][ML2T3I2]=[ML2T3][Q] = \frac{[V]^2}{[I][R]} = \frac{[ML^2T^{-3}I^{-1}]^2}{[I][ML^2T^{-3}I^{-2}]} = [ML^2T^{-3}][Q]=[I][R][V]2​=[I][ML2T−3I−2][ML2T−3I−1]2​=[ML2T−3]


2024

Q1. Least count of vernier caliper:LC=1 main scale division1 vernier scale divisionLC = \text{1 main scale division} – \text{1 vernier scale division}LC=1 main scale division−1 vernier scale division

  • Measure length: L=MSR+(VSD × LC)L = \text{MSR} + (\text{VSD × LC})L=MSR+(VSD × LC)

Q2. Percentage error:Max error=±0.02cm%Error=0.0210×100=0.2%\text{Max error} = ±0.02\,\text{cm} \% \text{Error} = \frac{0.02}{10} \times 100 = 0.2\%Max error=±0.02cm%Error=100.02​×100=0.2%

Q3. Dimensional analysis of T=2πl/gT = 2\pi \sqrt{l/g}T=2πl/g​:

  • L = [L], g = [LT⁻²]

Q3. Dimensional formula of Q=m2g/t3Q = m^2 g / t^3Q=m2g/t3:

  • m = [M], g = [LT⁻²], t = [T]

[Q] = [M]^2 [L T^{-2}] [T^{-3}]^{-1} ?? \] Wait carefully: \( t^3 \) in denominator → multiply by [T³]: \[ [Q] = M^2 L T^{-2} T^{-3} = M^2 L T^{-5} \]

Q2. Random error → unpredictable, reduces with repeated trials.
Systematic error → consistent bias, cannot be reduced by averaging.

Q3. Max possible error = ±1 mm = ±0.001 m%error=0.0011.2×1000.083%\% \text{error} = \frac{0.001}{1.2} \times 100 \approx 0.083\%%error=1.20.001​×100≈0.083%


2021

Q1. Digital vernier caliper: displays reading directly → avoids parallax error.

Q2. Dimensional formula of surface tension T=F/LT = F/LT=F/L:

  • F = [MLT⁻²], L = [L] → T = [MLT⁻²]/[L] = [MT⁻²] ✅

Q3. Resultant error:

  • For Q=x±δxQ = x \pm \delta xQ=x±δx, Y=f(x1,x2,...)Y = f(x_1, x_2, …)Y=f(x1​,x2​,…)

δYY=(δx1x1)2+(δx2x2)2+...\frac{\delta Y}{Y} = \sqrt{(\frac{\delta x_1}{x_1})^2 + (\frac{\delta x_2}{x_2})^2 + …}YδY​=(x1​δx1​​)2+(x2​δx2​​)2+…​


2020

Q1. Travelling microscope for diameter:

  • Focus on top and bottom of wire, measure difference in readings = diameter.

Q2. Dimensional formula of E=12mv2E = \frac{1}{2} mv^2E=21​mv2:

  • m = [M], v = [LT⁻¹]

E = [M][L^2 T^{-2}] = [ML^2 T^{-2}] \] ✅ **Q3.** Significant figures indicate precision; always report consistent sig. figs. — ### **2019** **Q1.** Fundamental: length, mass, time, etc. Derived: area, volume, velocity, acceleration, force, etc. **Q2.** Volume of sphere: \( V = \frac{4}{3}\pi r^3 \), error propagation: \[ \frac{\delta V}{V} = 3 \frac{\delta r}{r}

  • δr = 0.01 mm = 0.001 cm → calculate δV.

Q3. Period of mass-spring: T=2πm/kT = 2\pi \sqrt{m/k}T=2πm/k​ → verified by dimensional analysis:

  • [M]/[M T⁻²] = [T²] → √ = [T] ✅

2018

Q1. Density using pycnometer:ρ=Mass of liquidVolume\rho = \frac{\text{Mass of liquid}}{\text{Volume}}ρ=VolumeMass of liquid​

  • Measure mass of empty pycnometer, with liquid, then volume.

Q2. Relative error in R=V/IR = V/IR=V/I:δRR=δVV+δII=1%+2%=3%\frac{\delta R}{R} = \frac{\delta V}{V} + \frac{\delta I}{I} = 1\% + 2\% = 3\%RδR​=VδV​+IδI​=1%+2%=3%

Q3. Random/systematic errors: see 2022 Q2.


2017

Q1. Thickness of thin sheet using screw gauge → measure multiple times → calculate mean ± standard deviation.

Q2. Dimensional formula of torque τ=Fr\tau = F \cdot rτ=F⋅r

  • F = [MLT⁻²], r = [L] → τ = [ML²T⁻²] ✅

Q3. Least count method → calculate percentage error:%error=least countmeasured value×100\% \text{error} = \frac{\text{least count}}{\text{measured value}} \times 100%error=measured valueleast count​×100


2016

Q1. Displacement method for volume: same as 2022 Q1.

Q2. Pressure: P=F/AP = F/AP=F/A → [MLT⁻²]/[L²] = [ML⁻¹T⁻²] ✅

Q3. Absolute error = ±0.001 mRelative error=0.0011.250.0008=0.08%\text{Relative error} = \frac{0.001}{1.25} \approx 0.0008 = 0.08\%Relative error=1.250.001​≈0.0008=0.08%


2015

Q1. Diameter using caliper/screw gauge: main scale + circular scale reading.

Q2. Dimensional formula of frequency f=1/Tf = 1/Tf=1/T → [T⁻¹] ✅

Q3. Percentage error: ±0.05 cm on 10 cm → 0.05/10 × 100 = 0.5%


2014

Q1. Accuracy vs precision: see 2023 Q1.

Q2. Rectangle area: A = l × b, errors add in quadrature:δAA=δll+δbb=0.110+0.15=0.01+0.02=0.03=3%\frac{\delta A}{A} = \frac{\delta l}{l} + \frac{\delta b}{b} = \frac{0.1}{10} + \frac{0.1}{5} = 0.01 + 0.02 = 0.03 = 3\%AδA​=lδl​+bδb​=100.1​+50.1​=0.01+0.02=0.03=3%

Q3. Dimensional check for a=dv/dta = dv/dta=dv/dt: v = [LT⁻¹], t = [T] → a = [LT⁻¹]/[T] = [LT⁻²] ✅


2013

Q1. Physical quantities: mass, length, time, etc. Units: SI units. Dimensions: [M], [L], [T].

Q2. Diameter using screw gauge: see 2025 Q2.

Q3. Error propagation: Q=XY/ZQ = XY/ZQ=XY/Z, percentage error: