NEET Work, Energy and Power PYQs | 2013–2025

2025

Q1. A body of mass 2 kg is moving with a velocity of 5 m/s. Calculate its kinetic energy.

Q2. A force of 10 N is applied to move a body through a distance of 5 m. What is the work done?

Q3. A person lifts a 10 kg box vertically by 3 m. Find the work done by the person.


2024

Q1. Define power and derive the relation between power, work, and time.

Q2. A body of mass 4 kg moves with velocity 3 m/s. Calculate the kinetic energy of the body.

Q3. If a force of 20 N acts on a body for 10 s and displaces it by 15 m, find the work done and power delivered.


2023

Q1. A car of mass 1000 kg is moving at a velocity of 36 km/h. Calculate the kinetic energy of the car.

Q2. A force of 50 N is applied to a body, and it moves through a displacement of 8 m in the direction of the force. Find the work done.

Q3. A machine does 1000 J of work in 10 s. Find its power.


2022

Q1. A body of mass 5 kg is thrown vertically upward with a velocity of 10 m/s. Find the work done against gravity.

Q2. A 10 kg body is lifted by a person through a height of 10 m. What is the work done by the person?

Q3. A car engine produces a power of 75 kW. How much work is done by the engine in 1 minute?


2021

Q1. A block of mass 5 kg is raised to a height of 4 m. Calculate the potential energy of the block.

Q2. If a person does 300 J of work in 2 minutes, calculate the power generated.

Q3. A person applies a force of 10 N to a box and moves it through a horizontal distance of 5 m. What is the work done on the box?


2020

Q1. A body of mass 2 kg is moving with a velocity of 6 m/s. Find its kinetic energy.

Q2. A person pushes a box with a force of 15 N and moves it a distance of 4 m. Calculate the work done.

Q3. If a machine uses 100 J of work in 10 s, calculate its power.


2019

Q1. A body of mass 10 kg is moving with a speed of 20 m/s. Calculate its kinetic energy.

Q2. A person does 500 J of work in 10 seconds. Find the power generated by the person.

Q3. A 100 W motor operates for 5 minutes. How much work is done by the motor?


2018

Q1. A body is moving with a velocity of 8 m/s. If its mass is 4 kg, calculate its kinetic energy.

Q2. A man lifts a box of mass 20 kg through a height of 2 m. Calculate the work done.

Q3. A person applies a force of 25 N to a box and moves it a distance of 10 m. Calculate the work done on the box.


2017

Q1. A body of mass 2 kg moves with a velocity of 5 m/s. Find its kinetic energy.

Q2. A force of 12 N acts on a body for 8 s, and the displacement is 16 m. Calculate the work done and power delivered.

Q3. A body of mass 3 kg is lifted by 4 m. Find the potential energy of the body.


2016

Q1. A 2 kg body is moving with a velocity of 10 m/s. Calculate its kinetic energy.

Q2. A person lifts a box of mass 5 kg through a height of 3 m. Calculate the work done against gravity.

Q3. A car engine delivers 80 kW of power. How much work is done by the engine in 1 minute?


2015

Q1. A body of mass 3 kg moves with a velocity of 4 m/s. Calculate the kinetic energy.

Q2. A person applies a force of 50 N to move a box through a distance of 3 m. Find the work done.

Q3. A machine performs 1500 J of work in 10 s. Find the power delivered by the machine.


2014

Q1. A body of mass 6 kg is lifted through a height of 5 m. Find the potential energy of the body.

Q2. A force of 30 N moves a body through a distance of 6 m. Calculate the work done.

Q3. A person does 200 J of work in 4 seconds. Find the power.


2013

Q1. A body of mass 8 kg is moving with a velocity of 2 m/s. Calculate its kinetic energy.

Q2. A force of 12 N is applied to move a body a distance of 3 m. What is the work done?

Q3. A machine generates 500 J of work in 5 seconds. Find the power delivered by the machine.


Work, Energy, and Power — Solutions (2025 → 2013)


2025

Q1. Kinetic Energy (KE)
Given:

  • Mass m=2kgm = 2 \, \text{kg}m=2kg
  • Velocity v=5m/sv = 5 \, \text{m/s}v=5m/s

KE=12mv2=12×2×52=25JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 2 \times 5^2 = 25 \, \text{J}KE=21​mv2=21​×2×52=25J


Q2. Work Done (W)
Given:

  • Force F=10NF = 10 \, \text{N}F=10N
  • Displacement s=5ms = 5 \, \text{m}s=5m

W=F×s=10×5=50JW = F \times s = 10 \times 5 = 50 \, \text{J}W=F×s=10×5=50J


Q3. Work Done in Lifting a Box
Given:

  • Mass of box m=10kgm = 10 \, \text{kg}m=10kg
  • Height h=3mh = 3 \, \text{m}h=3m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

W=mgh=10×10×3=300JW = mgh = 10 \times 10 \times 3 = 300 \, \text{J}W=mgh=10×10×3=300J


2024

Q1. Power Formula Derivation
Power PPP is the rate at which work is done, or energy is transferred:P=Wt=F×stP = \frac{W}{t} = \frac{F \times s}{t}P=tW​=tF×s​

Where WWW is work, FFF is force, sss is displacement, and ttt is time.


Q2. Kinetic Energy
Given:

  • Mass m=4kgm = 4 \, \text{kg}m=4kg
  • Velocity v=3m/sv = 3 \, \text{m/s}v=3m/s

KE=12mv2=12×4×32=18JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 4 \times 3^2 = 18 \, \text{J}KE=21​mv2=21​×4×32=18J


Q3. Work Done and Power
Given:

  • Force F=20NF = 20 \, \text{N}F=20N
  • Time t=10st = 10 \, \text{s}t=10s
  • Displacement s=15ms = 15 \, \text{m}s=15m

Work done:W=F×s=20×15=300JW = F \times s = 20 \times 15 = 300 \, \text{J}W=F×s=20×15=300J

Power:P=Wt=30010=30WP = \frac{W}{t} = \frac{300}{10} = 30 \, \text{W}P=tW​=10300​=30W


2023

Q1. Kinetic Energy of a Car
Given:

  • Mass m=1000kgm = 1000 \, \text{kg}m=1000kg
  • Velocity v=36km/h=10m/sv = 36 \, \text{km/h} = 10 \, \text{m/s}v=36km/h=10m/s

KE=12mv2=12×1000×102=50000JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 1000 \times 10^2 = 50000 \, \text{J}KE=21​mv2=21​×1000×102=50000J


Q2. Work Done by a Force
Given:

  • Force F=50NF = 50 \, \text{N}F=50N
  • Displacement s=8ms = 8 \, \text{m}s=8m

W=F×s=50×8=400JW = F \times s = 50 \times 8 = 400 \, \text{J}W=F×s=50×8=400J


Q3. Power Delivered by a Machine
Given:

  • Work done W=1000JW = 1000 \, \text{J}W=1000J
  • Time t=10st = 10 \, \text{s}t=10s

P=Wt=100010=100WP = \frac{W}{t} = \frac{1000}{10} = 100 \, \text{W}P=tW​=101000​=100W


2022

Q1. Work Done Against Gravity
Given:

  • Mass m=5kgm = 5 \, \text{kg}m=5kg
  • Initial velocity u=10m/su = 10 \, \text{m/s}u=10m/s
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

At maximum height, the work done against gravity is equal to the potential energy:PE=mgh=5×10×10=500JPE = mgh = 5 \times 10 \times 10 = 500 \, \text{J}PE=mgh=5×10×10=500J


Q2. Work Done in Lifting a 10 kg Body
Given:

  • Mass m=10kgm = 10 \, \text{kg}m=10kg
  • Height h=10mh = 10 \, \text{m}h=10m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

W=mgh=10×10×10=1000JW = mgh = 10 \times 10 \times 10 = 1000 \, \text{J}W=mgh=10×10×10=1000J


Q3. Work Done by a Car Engine
Given:

  • Power P=75kW=75000WP = 75 \, \text{kW} = 75000 \, \text{W}P=75kW=75000W
  • Time t=1minute=60secondst = 1 \, \text{minute} = 60 \, \text{seconds}t=1minute=60seconds

Work done:W=P×t=75000×60=4500000JW = P \times t = 75000 \times 60 = 4500000 \, \text{J}W=P×t=75000×60=4500000J


2021

Q1. Potential Energy of a Block
Given:

  • Mass m=5kgm = 5 \, \text{kg}m=5kg
  • Height h=4mh = 4 \, \text{m}h=4m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

PE=mgh=5×10×4=200JPE = mgh = 5 \times 10 \times 4 = 200 \, \text{J}PE=mgh=5×10×4=200J


Q2. Power Generated by a Person
Given:

  • Work W=300JW = 300 \, \text{J}W=300J
  • Time t=2minutes=120secondst = 2 \, \text{minutes} = 120 \, \text{seconds}t=2minutes=120seconds

P=Wt=300120=2.5WP = \frac{W}{t} = \frac{300}{120} = 2.5 \, \text{W}P=tW​=120300​=2.5W


Q3. Work Done on a Box
Given:

  • Force F=10NF = 10 \, \text{N}F=10N
  • Displacement s=5ms = 5 \, \text{m}s=5m

W=F×s=10×5=50JW = F \times s = 10 \times 5 = 50 \, \text{J}W=F×s=10×5=50J


2020

Q1. Kinetic Energy of a Body
Given:

  • Mass m=2kgm = 2 \, \text{kg}m=2kg
  • Velocity v=6m/sv = 6 \, \text{m/s}v=6m/s

KE=12mv2=12×2×62=36JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 2 \times 6^2 = 36 \, \text{J}KE=21​mv2=21​×2×62=36J


Q2. Work Done on a Box
Given:

  • Force F=15NF = 15 \, \text{N}F=15N
  • Displacement s=4ms = 4 \, \text{m}s=4m

W=F×s=15×4=60JW = F \times s = 15 \times 4 = 60 \, \text{J}W=F×s=15×4=60J


Q3. Power of a Machine
Given:

  • Work done W=100JW = 100 \, \text{J}W=100J
  • Time t=10st = 10 \, \text{s}t=10s

P=Wt=10010=10WP = \frac{W}{t} = \frac{100}{10} = 10 \, \text{W}P=tW​=10100​=10W


2019

Q1. Kinetic Energy of a Body
Given:

  • Mass m=10kgm = 10 \, \text{kg}m=10kg
  • Velocity v=20m/sv = 20 \, \text{m/s}v=20m/s

KE=12mv2=12×10×202=2000JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 10 \times 20^2 = 2000 \, \text{J}KE=21​mv2=21​×10×202=2000J


Q2. Power Generated by a Person
Given:

  • Work W=500JW = 500 \, \text{J}W=500J
  • Time t=10st = 10 \, \text{s}t=10s

P=Wt=50010=50WP = \frac{W}{t} = \frac{500}{10} = 50 \, \text{W}P=tW​=10500​=50W


Q3. Work Done by a Motor
Given:

  • Power P=100WP = 100 \, \text{W}P=100W
  • Time t=5minutes=300secondst = 5 \, \text{minutes} = 300 \, \text{seconds}t=5minutes=300seconds

W=P×t=100×300=30000JW = P \times t = 100 \times 300 = 30000 \, \text{J}W=P×t=100×300=30000J


2018

Q1. Kinetic Energy of a Body
Given:

  • Mass m=4kgm = 4 \, \text{kg}m=4kg
  • Velocity v=8m/sv = 8 \, \text{m/s}v=8m/s

KE=12mv2=12×4×82=128JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 4 \times 8^2 = 128 \, \text{J}KE=21​mv2=21​×4×82=128J


Q2. Work Done by Lifting a Box
Given:

  • Mass m=20kgm = 20 \, \text{kg}m=20kg
  • Height h=2mh = 2 \, \text{m}h=2m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

W=mgh=20×10×2=400JW = mgh = 20 \times 10 \times 2 = 400 \, \text{J}W=mgh=20×10×2=400J


Q3. Work Done on a Box
Given:

  • Force F=25NF = 25 \, \text{N}F=25N
  • Displacement s=10ms = 10 \, \text{m}s=10m

W=F×s=25×10=250JW = F \times s = 25 \times 10 = 250 \, \text{J}W=F×s=25×10=250J


2017

Q1. Kinetic Energy of a Body
Given:

  • Mass m=2kgm = 2 \, \text{kg}m=2kg
  • Velocity v=5m/sv = 5 \, \text{m/s}v=5m/s

KE=12mv2=12×2×52=25JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 2 \times 5^2 = 25 \, \text{J}KE=21​mv2=21​×2×52=25J


Q2. Work Done and Power Delivered
Given:

  • Force F=12NF = 12 \, \text{N}F=12N
  • Displacement s=16ms = 16 \, \text{m}s=16m
  • Time t=8st = 8 \, \text{s}t=8s

Work Done:W=F×s=12×16=192JW = F \times s = 12 \times 16 = 192 \, \text{J}W=F×s=12×16=192J

Power Delivered:P=Wt=1928=24WP = \frac{W}{t} = \frac{192}{8} = 24 \, \text{W}P=tW​=8192​=24W


Q3. Potential Energy of a Body
Given:

  • Mass m=3kgm = 3 \, \text{kg}m=3kg
  • Height h=4mh = 4 \, \text{m}h=4m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

PE=mgh=3×10×4=120JPE = mgh = 3 \times 10 \times 4 = 120 \, \text{J}PE=mgh=3×10×4=120J


2016

Q1. Kinetic Energy of a Body
Given:

  • Mass m=2kgm = 2 \, \text{kg}m=2kg
  • Velocity v=10m/sv = 10 \, \text{m/s}v=10m/s

KE=12mv2=12×2×102=100JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 2 \times 10^2 = 100 \, \text{J}KE=21​mv2=21​×2×102=100J


Q2. Work Done in Lifting a Box
Given:

  • Mass m=5kgm = 5 \, \text{kg}m=5kg
  • Height h=3mh = 3 \, \text{m}h=3m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

W=mgh=5×10×3=150JW = mgh = 5 \times 10 \times 3 = 150 \, \text{J}W=mgh=5×10×3=150J


Q3. Work Done by Car Engine
Given:

  • Power P=80kW=80000WP = 80 \, \text{kW} = 80000 \, \text{W}P=80kW=80000W
  • Time t=1minute=60secondst = 1 \, \text{minute} = 60 \, \text{seconds}t=1minute=60seconds

W=P×t=80000×60=4800000JW = P \times t = 80000 \times 60 = 4800000 \, \text{J}W=P×t=80000×60=4800000J


2015

Q1. Kinetic Energy
Given:

  • Mass m=3kgm = 3 \, \text{kg}m=3kg
  • Velocity v=4m/sv = 4 \, \text{m/s}v=4m/s

KE=12mv2=12×3×42=24JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 3 \times 4^2 = 24 \, \text{J}KE=21​mv2=21​×3×42=24J


Q2. Work Done by a Person
Given:

  • Force F=50NF = 50 \, \text{N}F=50N
  • Displacement s=3ms = 3 \, \text{m}s=3m

W=F×s=50×3=150JW = F \times s = 50 \times 3 = 150 \, \text{J}W=F×s=50×3=150J


Q3. Power Delivered by a Machine
Given:

  • Work done W=1500JW = 1500 \, \text{J}W=1500J
  • Time t=10st = 10 \, \text{s}t=10s

P=Wt=150010=150WP = \frac{W}{t} = \frac{1500}{10} = 150 \, \text{W}P=tW​=101500​=150W


2014

Q1. Potential Energy of a Body
Given:

  • Mass m=6kgm = 6 \, \text{kg}m=6kg
  • Height h=5mh = 5 \, \text{m}h=5m
  • Gravitational acceleration g=10m/s2g = 10 \, \text{m/s}^2g=10m/s2

PE=mgh=6×10×5=300JPE = mgh = 6 \times 10 \times 5 = 300 \, \text{J}PE=mgh=6×10×5=300J


Q2. Work Done
Given:

  • Force F=30NF = 30 \, \text{N}F=30N
  • Displacement s=6ms = 6 \, \text{m}s=6m

W=F×s=30×6=180JW = F \times s = 30 \times 6 = 180 \, \text{J}W=F×s=30×6=180J


Q3. Power
Given:

  • Work W=200JW = 200 \, \text{J}W=200J
  • Time t=4secondst = 4 \, \text{seconds}t=4seconds

P=Wt=2004=50WP = \frac{W}{t} = \frac{200}{4} = 50 \, \text{W}P=tW​=4200​=50W


2013

Q1. Kinetic Energy
Given:

  • Mass m=8kgm = 8 \, \text{kg}m=8kg
  • Velocity v=2m/sv = 2 \, \text{m/s}v=2m/s

KE=12mv2=12×8×22=16JKE = \frac{1}{2} m v^2 = \frac{1}{2} \times 8 \times 2^2 = 16 \, \text{J}KE=21​mv2=21​×8×22=16J


Q2. Work Done
Given:

  • Force F=12NF = 12 \, \text{N}F=12N
  • Displacement s=3ms = 3 \, \text{m}s=3m

W=F×s=12×3=36JW = F \times s = 12 \times 3 = 36 \, \text{J}W=F×s=12×3=36J


Q3. Power Delivered by a Machine
Given:

  • Work W=500JW = 500 \, \text{J}W=500J
  • Time t=5secondst = 5 \, \text{seconds}t=5seconds

P=Wt=5005=100WP = \frac{W}{t} = \frac{500}{5} = 100 \, \text{W}P=tW​=5500​=100W