Polynomials Notes with Examples & Questions | Competitive Exams

Polynomials – Complete Notes for Competitive Exams

1. Introduction

A polynomial is an algebraic expression made up of one or more terms with variables raised to non-negative integer powers.

General form:P(x)=anxn+an1xn1+...+a1x+a0P(x) = a_n x^n + a_{n-1} x^{n-1} + … + a_1 x + a_0P(x)=an​xn+an−1​xn−1+…+a1​x+a0​

where aia_iai​ are constants and nnn is a non-negative integer.


2. Degree of a Polynomial

  • Degree = highest power of the variable in the polynomial.
  • Example: P(x)=5x4+3x2x+7P(x) = 5x^4 + 3x^2 – x + 7P(x)=5×4+3×2−x+7 → Degree = 4

3. Types of Polynomials

  1. Monomial – single term, e.g., 5x25x^25×2
  2. Binomial – two terms, e.g., x+3x + 3x+3
  3. Trinomial – three terms, e.g., x2+x+1x^2 + x + 1x2+x+1
  4. Polynomial – more than three terms, e.g., 2x3+3x2x+52x^3 + 3x^2 – x + 52×3+3×2−x+5

4. Key Concepts

(a) Remainder Theorem

If a polynomial P(x)P(x)P(x) is divided by (xa)(x – a)(x−a), the remainder = P(a)P(a)P(a)

(b) Factor Theorem

If P(a)=0P(a) = 0P(a)=0, then (xa)(x – a)(x−a) is a factor of P(x)P(x)P(x)

(c) Sum and Product of Roots

For quadratic polynomial ax2+bx+c=0ax^2 + bx + c = 0ax2+bx+c=0:

  • Sum of roots = b/a-b/a−b/a
  • Product of roots = c/ac/ac/a

(d) Special Products

  • (x+a)(x+b)=x2+(a+b)x+ab(x + a)(x + b) = x^2 + (a+b)x + ab(x+a)(x+b)=x2+(a+b)x+ab
  • (xa)(xb)=x2(a+b)x+ab(x – a)(x – b) = x^2 – (a+b)x + ab(x−a)(x−b)=x2−(a+b)x+ab

5. Important Tips

  • Always check the highest degree term for degree
  • Factorization saves time in exams
  • Use Remainder & Factor Theorem for quick evaluation
  • Carefully handle signs when expanding or factoring

Top 25 Practice Questions – Polynomials

Q1.

Find the degree of P(x)=3x4+5x2x+7P(x) = 3x^4 + 5x^2 – x + 7P(x)=3×4+5×2−x+7

Q2.

Check if x2x – 2x−2 is a factor of P(x)=x33x2+4x8P(x) = x^3 – 3x^2 + 4x – 8P(x)=x3−3×2+4x−8

Q3.

Divide P(x)=x3+4x2+5x+2P(x) = x^3 + 4x^2 + 5x + 2P(x)=x3+4×2+5x+2 by x+1x + 1x+1

Q4.

Find the remainder when x32x2+3x4x^3 – 2x^2 + 3x – 4x3−2×2+3x−4 is divided by x1x – 1x−1

Q5.

Factorize x2+5x+6x^2 + 5x + 6x2+5x+6

Q6.

Factorize x27x+12x^2 – 7x + 12x2−7x+12

Q7.

Solve x23x10=0x^2 – 3x – 10 = 0x2−3x−10=0

Q8.

If x=1x = 1x=1 is a root of P(x)=x36x2+11x6P(x) = x^3 – 6x^2 + 11x – 6P(x)=x3−6×2+11x−6, find another factor

Q9.

Divide 2x3+3x25x+62x^3 + 3x^2 – 5x + 62×3+3×2−5x+6 by x+2x + 2x+2

Q10.

Find the sum and product of roots of x28x+15x^2 – 8x + 15x2−8x+15

Q11.

If x34x2+x+6=0x^3 – 4x^2 + x + 6 = 0x3−4×2+x+6=0, find a root by trial

Q12.

Factorize x3+3x24x12x^3 + 3x^2 – 4x – 12x3+3×2−4x−12

Q13.

Check whether x+3x + 3x+3 is a factor of x3+4x2+x6x^3 + 4x^2 + x – 6x3+4×2+x−6

Q14.

Divide x42x3+x2+x2x^4 – 2x^3 + x^2 + x – 2x4−2×3+x2+x−2 by x1x – 1x−1

Q15.

Solve x2+x6=0x^2 + x – 6 = 0x2+x−6=0

Q16.

Find the remainder when 2x35x2+4x12x^3 – 5x^2 + 4x – 12×3−5×2+4x−1 is divided by x2x – 2x−2

Q17.

Factorize x29x^2 – 9x2−9

Q18.

Find the roots of x24x+4x^2 – 4x + 4x2−4x+4

Q19.

Divide x32x2x+2x^3 – 2x^2 – x + 2x3−2×2−x+2 by x2x – 2x−2

Q20.

Check whether x1x – 1x−1 is a factor of x3x2x+1x^3 – x^2 – x + 1x3−x2−x+1

Q21.

Factorize x33x24x+12x^3 – 3x^2 – 4x + 12x3−3×2−4x+12

Q22.

Find the sum of roots of 3x25x+2=03x^2 – 5x + 2 = 03×2−5x+2=0

Q23.

Factorize x2+7x+12x^2 + 7x + 12x2+7x+12

Q24.

Divide x3+6x2+11x+6x^3 + 6x^2 + 11x + 6x3+6×2+11x+6 by x+1x + 1x+1

Q25.

If x=2x = -2x=−2 is a root of x3+x24x4=0x^3 + x^2 – 4x – 4 = 0x3+x2−4x−4=0, find other factors

Answer

Answers – Polynomials

Q1. 4
Q2. Yes, x2x – 2x−2 is a factor
Q3. Quotient = x2+3x+2x^2 + 3x + 2x2+3x+2, Remainder = 0
Q4. Remainder = -2
Q5. (x+2)(x+3)(x + 2)(x + 3)(x+2)(x+3)
Q6. (x3)(x4)(x – 3)(x – 4)(x−3)(x−4)
Q7. x=5,2x = 5, -2x=5,−2
Q8. Factor = x25x+6x^2 – 5x + 6x2−5x+6
Q9. Quotient = 2x2x32x^2 – x – 32×2−x−3, Remainder = 12
Q10. Sum = 8, Product = 15
Q11. Root = 2
Q12. (x+3)(x2x4)(x + 3)(x^2 – x – 4)(x+3)(x2−x−4)
Q13. Not a factor
Q14. Quotient = x3x2+0x+1x^3 – x^2 + 0x + 1x3−x2+0x+1, Remainder = 0
Q15. x=2,3x = 2, -3x=2,−3
Q16. Remainder = 3
Q17. (x3)(x+3)(x – 3)(x + 3)(x−3)(x+3)
Q18. x=2x = 2x=2 (repeated root)
Q19. Quotient = x20x1x^2 – 0x – 1x2−0x−1, Remainder = 0
Q20. Yes
Q21. (x3)(x2+0x4)(x – 3)(x^2 + 0x – 4)(x−3)(x2+0x−4)
Q22. Sum = 5/3
Q23. (x+3)(x+4)(x + 3)(x + 4)(x+3)(x+4)
Q24. Quotient = x2+5x+6x^2 + 5x + 6x2+5x+6, Remainder = 0
Q25. Factor = x24x^2 – 4x2−4