Sets and Functions Notes & Questions | Competitive Exams

Sets and Functions – Complete Notes for Competitive Exams

1. Introduction

Sets and Functions are fundamental concepts in mathematics and frequently appear in Quantitative Aptitude sections of SSC, Banking, Railways, and other competitive exams.

  • Set: A collection of well-defined objects.
  • Function: A relation between two sets where each element of the first set corresponds to exactly one element of the second set.

2. Sets

Definitions

  1. Empty set: \emptyset∅ or {}\{\}{}
  2. Finite set: Contains a limited number of elements
  3. Infinite set: Contains unlimited elements
  4. Subset: ABA \subseteq BA⊆B → All elements of A are in B
  5. Proper subset: ABA \subset BA⊂B → A is a subset of B but not equal to B
  6. Universal set (U): The set containing all possible elements under consideration

Operations on Sets

  • Union: AB={x:xA or xB}A \cup B = \{x : x \in A \text{ or } x \in B\}A∪B={x:x∈A or x∈B}
  • Intersection: AB={x:xA and xB}A \cap B = \{x : x \in A \text{ and } x \in B\}A∩B={x:x∈A and x∈B}
  • Difference: AB={x:xA and xB}A – B = \{x : x \in A \text{ and } x \notin B\}A−B={x:x∈A and x∈/B}
  • Complement: A=UAA’ = U – AA′=U−A

3. Functions

Definitions

  • A function f from set A to set B is denoted f:ABf : A \to Bf:A→B.
  • Each element of A has exactly one image in B.

Types of Functions

  1. One-to-One (Injective): Different elements in A map to different elements in B
  2. Onto (Surjective): Every element of B has at least one pre-image in A
  3. Bijective: Both injective and surjective
  4. Constant Function: Every element of A maps to the same element in B
  5. Identity Function: f(x)=xf(x) = xf(x)=x for all xAx \in Ax∈A

Important Formulas

  • Number of subsets of a set with n elements: 2n2^n2n
  • Number of one-to-one functions from set A (m elements) to B (n elements): n(n1)(n2)...(nm+1)n(n-1)(n-2)…(n-m+1)n(n−1)(n−2)…(n−m+1) if nmn \ge mn≥m

4. Important Tips

  • Use Venn diagrams for solving set problems visually
  • For functions, check domain and range carefully
  • Complement rule: n(U)=n(A)+n(A)n(U) = n(A) + n(A’)n(U)=n(A)+n(A′)
  • Focus on injective, surjective, and bijective definitions for exams

Top 25 Practice Questions – Sets & Functions

Sets

Q1. Find ABA \cup BA∪B if A={1,2,3},B={2,3,4}A = \{1, 2, 3\}, B = \{2, 3, 4\}A={1,2,3},B={2,3,4}
Q2. Find ABA \cap BA∩B for the same sets
Q3. Find ABA – BA−B
Q4. If U={1,2,3,4,5},A={2,3}U = \{1,2,3,4,5\}, A = \{2,3\}U={1,2,3,4,5},A={2,3}, find AA’A′
Q5. Number of subsets of a set with 5 elements
Q6. Number of proper subsets of a set with 4 elements
Q7. If A={1,2,3},B={2,3,4,5}A = \{1,2,3\}, B = \{2,3,4,5\}A={1,2,3},B={2,3,4,5}, find AB|A \cup B|∣A∪B∣
Q8. If ABA \subseteq BA⊆B and A=3,B=5|A| = 3, |B| = 5∣A∣=3,∣B∣=5, how many subsets of B contain A?
Q9. Solve using Venn diagram: In a class of 50 students, 30 like Maths, 25 like Science, 10 like both. How many like neither?
Q10. If A={1,2,3,4},B={3,4,5,6}A = \{1,2,3,4\}, B = \{3,4,5,6\}A={1,2,3,4},B={3,4,5,6}, find AΔBA \Delta BAΔB (symmetric difference)

Functions

Q11. Determine if f(x)=2x+3f(x) = 2x + 3f(x)=2x+3 is one-to-one
Q12. Determine if f(x)=x2f(x) = x^2f(x)=x2 is onto from RR\mathbb{R} \to \mathbb{R}R→R
Q13. Find the range of f(x)=x2+1f(x) = x^2 + 1f(x)=x2+1
Q14. Is f(x)=3x+7f(x) = 3x + 7f(x)=3x+7 bijective if domain and codomain are R\mathbb{R}R?
Q15. Number of functions from a set with 3 elements to a set with 4 elements
Q16. Number of one-to-one functions from a set with 2 elements to a set with 5 elements
Q17. Find f(3)f(3)f(3) if f(x)=x2x+2f(x) = x^2 – x + 2f(x)=x2−x+2
Q18. If f(x)=x+2f(x) = x + 2f(x)=x+2 and g(x)=3xg(x) = 3xg(x)=3x, find (gf)(x)(g \circ f)(x)(g∘f)(x)
Q19. Determine if f(x)=x3f(x) = x^3f(x)=x3 is one-to-one and onto RR\mathbb{R} \to \mathbb{R}R→R
Q20. Domain of f(x)=1x2f(x) = \frac{1}{x-2}f(x)=x−21​
Q21. Range of f(x)=x1f(x) = \sqrt{x-1}f(x)=x−1​
Q22. If f(x)=x24x+3f(x) = x^2 – 4x + 3f(x)=x2−4x+3, find f(0)f(0)f(0) and f(3)f(3)f(3)
Q23. If f(x)=x+1f(x) = x + 1f(x)=x+1, find f1(x)f^{-1}(x)f−1(x)
Q24. Determine whether f(x)=x2f(x) = x^2f(x)=x2 is injective on [0,)[0, \infty)[0,∞)
Q25. If f(x)=2x+1f(x) = 2x + 1f(x)=2x+1, g(x)=x2g(x) = x^2g(x)=x2, find (fg)(2)(f \circ g)(2)(f∘g)(2)

Answer

Answers – Sets & Functions

Sets Answers

Q1. {1,2,3,4}\{1,2,3,4\}{1,2,3,4}
Q2. {2,3}\{2,3\}{2,3}
Q3. {1}\{1\}{1}
Q4. {1,4,5}\{1,4,5\}{1,4,5}
Q5. 32
Q6. 15
Q7. 5
Q8. 4
Q9. 5
Q10. {1,2,5,6}\{1,2,5,6\}{1,2,5,6}

Functions Answers

Q11. Yes
Q12. No
Q13. [1,)[1, \infty)[1,∞)
Q14. Yes
Q15. 43=644^3 = 6443=64
Q16. 5×4=205 \times 4 = 205×4=20
Q17. 8
Q18. 3(x+2)=3x+63(x + 2) = 3x + 63(x+2)=3x+6
Q19. Yes, Yes
Q20. xR,x2x \in \mathbb{R}, x \neq 2x∈R,x=2
Q21. [0,)[0, \infty)[0,∞)
Q22. f(0)=3,f(3)=0f(0) = 3, f(3) = 0f(0)=3,f(3)=0
Q23. f1(x)=x1f^{-1}(x) = x – 1f−1(x)=x−1
Q24. Yes
Q25. f(g(2))=f(4)=9f(g(2)) = f(4) = 9f(g(2))=f(4)=9